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Abstract

Two original contributions to the measurement of the cross section for inclusive bb̄ production at the
ATLAS experiment are presented in this thesis. In the first part we calculate the inclusive cross
section for bottom production at

√
s = 7 TeV at Next-to-Leading Order and including Next-to-

Leading-Log resummation using the FONLL public code. In the second part, we present Jet Energy
Scale Corrections originally derived for

√
s = 14 TeV and establish their validity for

√
s = 7 TeV

by reconstructing the invariant mass of a bb̄ pair coming from the decay of a Higgs boson with
mH = 120 GeV. The study is carried out on a Monte Carlo sample.
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Chapter 1

MOTIVATION

Jets originating from b-quarks, also known as b-jets, play a key role in the ATLAS physics program.
Looking at the Standard Model cross section for pp collisions (Fig 1.1), one can directly observe that
b-quark production provides a major contribution to the total cross section. A correct identification
of b-jets is thus crucial for the suppression of the light flavor QCD background and for the study
of rare events involving b-jets. These include precision measurements of top quark properties, the
search for the Higgs boson and also beyond Standard Model physics searches, notably the search for
Supersymmetry. Given the very large branching ratio for the decay of a top quark into a bottom

FIGURE 1.1: Predicted contributions to the Standard Model cross section for pp collisions. Figure
extracted from [1].

quark1, b-jets are present in practically every top decay event and are thus indispensable for the
identification of top production events. We note for instance that the identification of the“golden

1Most recent measurements give Γ(Wb)
Γ(Wq)

˛

˛

˛

q=b,s,d
= 0.99+0.09

−0.08 [2].
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2 MOTIVATION

channel” of top production tt̄ → WbWb̄ → (lν)b(jj)b̄ requires the successful tagging of one or two b-
jets. An efficient b-tagging is thus necessary for reducing the signal-to-background ratio in top physics
processes [3].
In the light Higgs hypothesis, which is favored by observations to date, the dominant decay mode is
H → bb̄ (see Figure 1.2). Thus b-jet identication is also important for Higgs searches. Bottom quarks
also appear in a number of decay channels of supersymmetric particles. The superpartners of the third
generation of quarks are often the lightest quark superpartners and thus among the easiest to detect.
For instance sbottom quarks are expected to decay to bottom quarks and neutralinos b̃ → b + χ̃0

1.

Also, the gluino production of sbottom quarks via pp → g̃g̃ → b̃b̄¯̃bb → (bχ̃1
0)b̄(b̄χ̃

0
1)b has a distinctive

signature involving 4 b-jets and large /ET in the final state.

FIGURE 1.2: Standard Model Higgs branching ratios as a function of the Higgs mass. Figure
extracted from [4].

It is evident from the above that the identification and study of b-jets is an essential ingredient for all
major physics searches in the ATLAS collaboration. With the present work we aim at contributing
(a) to ongoing work [5] for the calibration of b-tagging efficiencies in data with the System-8 and prel

T

methods and (b) to the more precise determination of b-jet specific corrections, which are necessary
for the study of processes described above.



Chapter 2

THE ATLAS EXPERIMENT

In this chapter we will give a brief description of the ATLAS experiment. For a more complete de-
scription we refer the reader to the original Technical Design Reports [6, 7] and the more recent [8].
The Large Hadron Collider is a proton-proton collider with a capability of reaching a center of mass
energy

√
s = 14 TeV (i.e. 7 TeV per beam) and a luminosity of L = 1034 cm−2s−1. After two startup

periods with LHC working at
√

s = 900 GeV and later at
√

s = 2.36 TeV, from the beginning of 2010
the LHC has been operating at

√
s = 7 TeV and will continue collecting data delivering an expected

1 fb−1 of data until the end of 2011. After a 1 year shutdown the LHC is scheduled to restart operating
at

√
s = 14 TeV in the beginning of 2013.

At design luminosity there will be 23 interactions per beam-crossing (most of them comprising
minimum-bias events) giving a total of 40 million interactions per second (beam crossings being 25 ns
apart). The guiding principle in the construction of the ATLAS experiment was the maximization of
the discovery potential for new physics, notably the search for the Higgs boson and supersymmetry1.
The study of such kind of events requires (a) a hermetic coverage in pseudorapidity and azimuthal
angle for the accurate determination of /ET and jet energy directions, (b) very good electromagnetic
and hadronic calorimeters for precision measurements of EM and hadronic objects and (c) muon spec-
trometers with a capacity for high-precision muon measurements.
The overall detector layout is shown in Fig. A.1. The detector is composed of 4 major parts: (i) the
inner detector, (ii) the calorimeter system, (iii) the muon spectrometers and (iv) the magnets.
The Inner Detector (depicted in Fig. A.2) measuring 7 m in length and 2.3 m in diameter is comprised
of 3 subdetectors: (a) the pixel detector, (b) the Semiconductor Tracker (SCT) and (c) the Transition
Radiation Tracker (TRT). It is immersed in a solenoidal magnetic field with intensity B = 2 T and
has a pseudorapidity coverage of |η| < 2.5. With the use of very high-granularity detectors close to
the interaction point the Inner Detector is used for the determination of impact parameters, particle
momentum, vertexing and pattern recognition. The innermost layer of the Pixel Detector (called
B-layer) is specially designed for identifying short-lived particles, such as B hadrons.
The calorimeter system (shown in Fig. A.3) is comprised of 3 parts: (a) the Electromagnetic calorime-
ter, (b) the Hadronic calorimeter and (c) the Forward calorimeters. Electromagnetic and Hadronic
calorimeters are divided into two regions: (i) barrel, covering the pseudorapidity range and |η| ≤ 1.475
(EMCal) and |η| ≤ 1.7 (HCal) and (ii) End Cap, covering the pseudorapidity range 1.375 ≤ |η| ≤ 3.
(EMCal) and 1.5 ≤ |η| ≤ 3.2 (HCal). The Electromagnetic (barrel and end-cap), Forward and
Hadronic End Cap Calorimeters use Liquid Argon for the active medium and lead (EMCal), copper
(HCal and FCal) or tungsten (FCal) for the absorbers. The Hadronic barrel Calorimeter uses plastic
scintillating tiles embedded in an iron absorber. The calorimeter system measures the energy and
momentum of electromagnetic and hadronic objects, providing a very good jet and /ET performance,
which is necessary for the study of many physics channels.

1Such events are expected to be extremely rare. For instance the rate of production of a light standard model Higgs
boson is expected to be of the order of 1 per 10 billion events(see Fig. 1.1).
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4 ATLAS

The calorimeter system is surrounded by a toroidal magnet system and the muon spectrometer. The
strong magnetic field produced by the toroidal magnets minimizes the probability of multiple scat-
terings. The muon spectrometer consists of muon chambers utilizing different detector technologies
to measure muons. The barrel chambers are arranged concentrically to the beam axis covering the
pseudorapidity range |η| < 1 while the end cap chambers are arrange in four disks disks transverse to
the beam axis, covering the range 1 < |η| < 2.7.

Conventions

In the ATLAS experiment the coordinate systems in use are defined as follows. The beam direction
defines the z-axis and the x − y plane is the plane transverse to the beam direction. The positive
x-axis points from the interaction point towards the center of the LHC ring and the positive y-axis
points upwards. The azimuthal angle φ is measured around the beam axis and the polar angle θ
is measured from the beam axis. One most frequently uses the pseudorapidity variable, defined as
η = − ln(tan θ/2). Transverse variables are defined in terms of their x and y components, e.g. for the

transverse momentum we have pT =
√

p2
x + p2

y. One can also define a distance measure in (η, φ) space

as ∆R =
√

(∆η)2 + (∆φ)2.



Chapter 3

THEORETICAL PREDICTIONS

In this chapter we will detail the calculation of the inclusive bb̄ cross section (a) at the parton level
and (b) at the jet level. The calculation will be done at Next-to-Leading Order (NLO)

(

i.e. O
(

α3
s

))

including the resummation of large logarithms with Next-to-Leading-Logarithmic (NLL) accuracy us-
ing the FONLL public code developped by M. Cacciari et al [9].

3.1 Parton level prediction

In recent years there have been considerable efforts in the determination of the pT distribution for
heavy quark production in hadron colliders (LEP, DESY, Tevatron). The large discrepancy1 between
data and NLO QCD predictions has stirred up a lot of theoretical undertaking that led to the devel-
opment of the powerful resummation procedures described below.
At LO, heavy flavour production proceeds either through quark-antiquark annihilation or through
gluon-gluon fusion, the latter being the dominant channel for proton-proton collisions at the LHC.
However at NLO new production channels (e.g. gluon splitting and flavor excitation) appear, account-
ing for large contributions to the LO cross section. Since the cross section for gg → gg is about a
hundred times bigger than the one for gg → QQ̄, NLO corrections can be as large as the LO value2,
and thus NLO accuracy is necessary for a consistent treatment of heavy flavor production processes.
Such processes (where mQ ≫ ΛQCD) have a particular theoretical appeal due to the smallness of
the coupling constant, which allows for a perturbative expansion of the differential cross section in
powers of αS

3. However, at high collision energies, where pT ≫ mQ ≫ ΛQCD, one can no longer
choose a single characteristic scale between pT and m. It has been proven [10] that in this 2-scale

regime large logarithms O
(

lnm pT

mQ

)

appear in the perturbative expansion. These logarithms spoil

the convergence of the perturbative expansion and have thus to be resummed to all orders. These

1Data for the total cross section for inclusive b production showed an excess by a factor of ∼ 3 over NLO calculations.
See [11] and references therein.

2At LO heavy quark production proceeds either through quark-antiquark annihilation qq̄ → QQ̄ or gluon-gluon
fusion gg → gg. At NLO a gluon can split into a quark-antiquark pair with a probability ∼ αs, giving rise to the process
gg → gQQ̄. See e.g. [10].

3We remind that at NLO the running coupling is given by

αS(m2
Q) =

1

b ln
`

m2
Q/Λ2

QCD

´

"

1 − b′

b

ln ln
`

m2
Q/Λ2

QCD

´

ln
`

m2
Q/Λ2

QCD

´

#

, with b =
33 − 2Nf

12π
, b′ =

153 − 19Nf

24π2
, (3.1)

where Nf is the number of flavors.
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6 THEORETICAL PREDICTIONS

terms can be classified as Leading Logarithmic (LL), Next-to-Leading Logarithmic (NLL) and so on:

LL : α2
S

(

αS ln
pT

mQ

)k

NLL : α3
S

(

αS ln
pT

mQ

)k

, k ∈ N (3.2)

They stem from singularities appearing during the emission of collinear and soft gluons (which, at
lower energies, are screened by mQ). These kind of divergences can be systematically absorbed via
the factorization theorem in the definition of non-perturbative parton distribution functions (or frag-
mentation functions) which in turn acquire a scale dependence. The differential cross section for the
inclusive production of a hadron H3 takes the form

dσ̂H1H2→H3X

dpT
(s,m2) =

dσ̂ij→QX

dpT

(

xs, µF ) ⊗ DQH3(xs, µF ), (3.3)

where σ̂ij→QX is the partonic cross section, directly calculable in perturbative QCD. The dependence
on the arbitrary scale µF

4 is a mere parametrization of large distance physics which cannot be described
by perturbative QCD. It is obvious that observables like σH1H2→H3X cannot depend on such arbitrary
scales, so to all orders of perturbation theory these scale dependencies must cancel out. However,
when we truncate the perturbative expansion at some particular order, this cancellation will not be
complete and thus cross sections will display a scale dependence.
The FONLL code provides for the calculation of the double differential cross section d2σ

dp2
T

dy
in hadron-

hadron and photon-hadron collisions matching a Fixed Order calculation (at NLO accuracy) with NLL
resummation. In the light of the above discussion, one can see the advantages of such an approach5:

• NLO calculation takes into account large corrections coming from O(α3
s) processes (eg gluon

splitting, flavor excitation)

• resummation of large logarithms enables a better description at large pT

• NLL accuracy lessens the scale dependence and will thus lead to narrower uncertainty bands for
the cross section prediction

After integrating over rapidities, the FONLL output is schematically given by [9]

dσ

dp2
T

= A(m)α2
s + B(m)α3

s

+

[

α2
s

∞
∑

i=2

ai

(

αs ln
µ

m

)i
+ α3

s

∞
∑

i=1

bi

(

αs ln
µ

m

)i
]

× G(m, pt)

+ O
(

α4
s

(

αs ln
µ

m

)i
)

+ O
(

α4
s × PST

)

, (3.4)

where PST stands for terms suppressed by powers of m/pT in the large pT limit and G is an arbitrary
function subject to the constraint G(m, pT ) → 1 as m/pT → 16. The FONLL code is based on the

4We note that σ̂ also depends on the renormalization scale through the running coupling αs = αs(µR). This depen-
dence reflects another type of singularity (UV) stemming from the exchange of virtual gluons. Here we have suppressed
the µR dependence for simplicity.

5We must also note that in the FONLL implementation the non-perturbative b fragmentation functions measured at
LEP were re-extracted and properly matched to the perturbative calculation fixing the historical discrepancy between
heavy flavour cross section measurements and theoretical calculations.

6Here we will present only the key ingredients that are relevant to the calculation, directing the avid reader to the
original publications [9,11].



3.1. Parton level prediction 7

choice of G made in [9], i.e.

G(m, pT ) =
p2

T

p2
T + 25m2

. (3.5)

The FONLL code requires the following input from the user: the energy and type of colliding beams,
the Parton Distribution Function sets, the value of the heavy quark mass, the value of factorization and
renormalization scales, and lastly the values of pT and rapidity y. The uncertainty of the cross section
has 3 major contributions coming from: PDF uncertainty, mass uncertainty and scale uncertainty.
In our study we use the FONLL built-in PDF library with the PDF set CTEQ6.1M [12]. The PDF’s
are constructed by minimizing a chi-square function

χ′ 2 =
∑

e

χ2
e(a, r), (3.6)

where e denotes the experimental datasets, a are the n PDF parameters (n = 20 for CTEQ6.1M) and
r a set of Gaussian random variables. The global minimum with respect to a and r represents the best
fit to the data. The corresponding uncertainties are calculated with the aid of the Hessian matrix

Hij ≡
1

2

∂2χ′2 (a, r̂(a))

∂ai∂aj
. (3.7)

More precisely, one defines n directions corresponding to the eigenvectors of the Hessian matrix and
calculates the excursions from the global minimum χ′

0 in the“+” and “−” direction along the eigen-
vectors. One obtains in this way 2n PDF sets which parametrize the area of the global minimum
(central PDF). The PDF-related uncertainties are then calculated by the master formulae [1]:

∆X+
max =

√

√

√

√

20
∑

i=1

[

max
(

X+
i − X0,X

−

i − X0, 0
)]2

, (3.8)

∆X−

max =

√

√

√

√

20
∑

i=1

[

max
(

X0 − X+
i ,X0 − X−

i , 0
)]2

. (3.9)

As far as the choice of mass is concerned, we take the value of the mass used in the CTEQ6.1M fit,
that is mb = 4.5 GeV, keeping the relative errors calculated in the MS-scheme for consistency [2]7:

mb = 4.5
+0.18(4.05%)
−0.08(1.67%) GeV. (3.10)

Finally for the QCD scales we choose µR = µF = µ0, where µ0 is calculated dynamically accord-

ing to the formula µ0 = mT =
√

m2
b + p2

T (b)8. The corresponding error is obtained by varying µ0

over the range [µ0/2, 2µ0]. Scanning over y bins [0,±0.5,±1.0,±1.5,±2.0,±2.5,±3.0] and pT bins
[0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, 10, 25, 50, 75, 100, 250, 500, 750, 1000]GeV and integrating over the ra-
pidities, we obtain the pT distribution shown in Figure 3.1. Integrating over pT we get the total cross
section for inclusive b production

σ(0.1 ≤ pT ≤ 1000 GeV) = 266
+29(10.9%) +13(4.9%) +3(1.1%)
−29(10.9%)PDF −26(9.8%)mb

−10(3.8%)QCD
µb. (3.11)

The total uncertainty curve in Figure 3.1 is then obtained by summing the individual uncertainty
contributions in quadrature

δ
dσ

dpT

∣

∣

∣

∣

tot

=

√

√

√

√

(

δ
dσ

dpT

∣

∣

∣

∣

PDF

)2

+

(

δ
dσ

dpT

∣

∣

∣

∣

m

)2

+

(

δ
dσ

dpT

∣

∣

∣

∣

QCD

)2

. (3.12)

7Consistency requires that the central value and uncertainty on the b-quark mass be defined in the same renormal-
ization scheme as the one used in the input PDF set.

8This choice slightly underestimates the uncertainties related to the variation of QCD scales. See [11].
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FIGURE 3.1: pT distribution for inclusive b-quark production in pp collisions at
√

s = 7 TeV.
Colored bands represent uncertainties related to the choice of PDF’s, scale and heavy quark mass.

Integrating dσ
dpT

+ δ dσ
dpT

∣

∣

∣

tot
and σ − δ dσ

dpT

∣

∣

∣

tot
over the whole pT spectrum, we obtain

σ(0.1 ≤ pT ≤ 1000 GeV) = 266
+39(14.7%)
−45(16.9%) µb (3.13)

The same calculation at Fixed Order (no resummation) yields a central value of σ(0.1 ≤ pT ≤
1000 GeV) = 252 µb. We see thus that the NLL resummation provides a marginal enhancement
by 5.6% over the Fixed Order result. However the NLL result differs significantly from the Fixed
Order result, especially in the high-pT region. More precisely the NLL resummation leads to narrower
uncertainty bands and thus to a better description of the pT distribution compared to the Fixed Order
result9. By inspecting the uncertainty contributions to the pT distribution, one can see that in the
regions 0 . pT . 7 GeV and 300 . pT . 1000 GeV the PDF related uncertainty dominates, while in
the intermediate region 7 . pT . 300 GeV the uncertainty is mainly due to the choice of scale. This
behaviour is to be expected, since at very low and very high pT PDF’s (especially those related to
gluon distribution) are not known with good accuracy [1].

3.2 Jet level prediction

The FONLL code provides us with the cross section for inclusive b-quark production. However, what
we need for this study is the cross section for inclusive b-jet production. To pass from the parton level
to the level of particle jets we need to fragment all partons. This can be done with event generators
like PYTHIA, which contain hadronization models and parton showers. A potential problem arises
here since event generators containing the necessary fragmentation models use LO matrix elements10.

9See the discussion at the beginning of this Section and also [9].
10For MC@NLO there is no official ATLAS production of bb̄ samples at

√
s = 7 TeV. We also note that parton shower

algorithms in PYTHIA include a resummation of soft and collinear logarithms at LL accuracy.



3.2. Jet level prediction 9

To remedy this, we reweight the pT distribution obtained from PYTHIA (LO) with the pT distribution
obtained by FONLL (NLO+NLL) using an overall normalization factor

R =
σparton,FONLL

σparton,PYTHIA
(3.14)

and transferring the shape of the pT distribution via the function

C(pT ) =

dσ
dpT

∣

∣

∣

parton,FONLL

dσ
dpT

∣

∣

∣

parton,PYTHIA

. (3.15)

For the latter we need a continuous function matching our FONLL result, so we fit the FONLL pT

distribution using an overconstrained fit given by the following function

dσ

dpT

∣

∣

∣

∣

parton,FONLL

= e16.9347e0.929545 ln pT e−0.192167(ln pT )2e−0.199752(ln pT )3e−2.35026·10−2(ln pT )4

× e1.13181·10−2(ln pT )5e−2.90086·10−4(ln pT )6e−2.18993·10−4(ln pT )7e1.57143·10−5(ln pT )8 .(3.16)

The fitted function together with the uncertainty envelope (fit to total uncertainty bands) is given
in Figures 3.2 and 3.3. Opting for an overconstrained fit ensures that the errors resulting from the
fitting procedure are negligible compared to the uncertainty in the theoretical calculation. In the
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FIGURE 3.2: Fits to theoretical prediction for the pT distribution in inclusive b-quark production
at

√
s = 7 TeV in the range 0 ≤ pT ≤ 1000 GeV.

same way, one should then find a function describing the pT distribution for inclusive b production
obtained by PYTHIA. The latter can be established from a Monte Carlo bb̄ sample by plotting the
number of b quarks as a function of the pT of the leading b quark. Normalizing the FONLL and
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FIGURE 3.3: Fits to theoretical prediction for the pT distribution in inclusive b-quark production
at

√
s = 7 TeV in the range 0 ≤ pT ≤ 16 GeV.

PYTHIA distributions to unity (i.e. setting R = 1), one can obtain the pT distribution for inclusive
b-jet production at NLO+NLL order by

dσ

dpT

∣

∣

∣

∣

bjet,NLO+NLL

= C(pT )
dσ

dpT

∣

∣

∣

∣

bjet,PY THIA

. (3.17)

We note that dσ
dpT

∣

∣

∣

bjet,PY THIA
is obtained from a Monte Carlo bb̄ sample by plotting the number of

b-jets as a function of the pT of the leading b-jet.



Chapter 4

MEASUREMENT OF THE bb̄ CROSS SECTION

4.1 Jet Reconstruction Algorithms

Although the theoretical construction of the theory of strong interactions is based on SU(3)c gauge
symmetry, it is well known that no physical observable displays signs of such a symmetry (color
confinement). Quarks and gluons produced in hadron collisions fragment and hadronize, producing
collections of colorless collimated hadrons called jets. In order to study jet properties in an experi-
ment, one needs a set of rules for grouping particles into jets. Over the years several jet algorithms
have been constructed and there is no universal jet algorithm for all topologies, since different classes
of algorithms are better suited to the study of specific topologies than others. For an overview and
comparison of different jet algorithms we refer the reader to [13]. Here we will only describe the
general characteristics of jet reconstruction algorithms and focus on the anti -kt algorithm, which is
the default used in ATLAS analyses.
Jet reconstruction algorithms need to satisfy a minimum set of properties adopted by the Snowmass
Accord [14]. These demand that a jet algorithm: be simple in implementation, be defined at any order
in perturbation theory, yield finite cross sections at any order in perturbation theory and be insensi-
tive to hadronization. A jet reconstruction algorithm must also be associated with a recombination
scheme, which indicates what momentum to assign to the combination of two particles. With time it
became clear that jet properties defined by the Snowmass accord were incomplete and one needed a
more stringent jet definition. The general guidelines for jet reconstruction in ATLAS were extracted
from [15]. The major theoretical guidelines are infrared and collinear safety, i.e. the number and
kinematics of jets remains the same after adding an infinitesimally soft parton or replacing a parton
by two collinear partons and order independence, i.e. the same hard scattering should be recon-
structed independently at parton, particle and detector level. Major experimental guidelines include
detector technology independence, environment independence (independence of pileup, un-
derlying activity etc) and implementation.
The anti-kT algorithm [16] belongs to the class of sequential recombination algorithms. Pairs of input
objects i, j are analyzed by defining the distance measures

diB = k2p
ti

dij = min(k2p
ti

mk2p
tj

)
∆R2

ij

R2
(4.1)

where dij , diB the distance between 2 entities (particles or pseudojets) or an entity and the beam
respectively, R the radius parameter1, p a parameter governing the relative power of the energy
versus geometrical (∆ij) scales (p = −1,+1 for the anti-kT ,kT algorithms respectively) and ∆R2

ij =

(yi − yj)
2 + (φi − φj)

2, with y and φ the rapidity and azimuth of said entities. The anti-kt algorithm

1In this study we choose R = 0.4.

11
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is Infrared and Collinear safe.
The process described above refers to particle jets. On an experimental level one also uses calorimeter
jets which are objects defined in terms of calorimeter cells. Signals coming from individual cells
are combined into larger signal objects: calorimeter towers and topological cell clusters. The former
constitute a collection of calorimeter cells with a fixed ∆η×∆φ. The latter are formed by an iterative
procedure, starting with a seed cell which passes a certain significance threshold2 and incorporating in
the cluster all neighboring cells until one reaches the region of cells with Γ = 0 (no energy is deposited
in the cell). For the purpose of jet-finding, towers and clusters are treated as massless pesudoparticles
and assigned a four-momentum calculated from the reconstructed energy according to the following
prescription

E = p =
√

p2
x + p2

y + p2
z

px = p
cos φ

cosh η

py = p
sin φ

cosh η

pz = p tanh η. (4.2)

4.2 b-tagging

b-tagging is the identification of jets containing a b-quark. A high b-tagging efficiency is of vital im-
portance for the study of physics processes that involve b-quarks3, since these suffer from very large
backgrounds coming from light-flavored jets. To define b-tagging performance one uses the Monte
Carlo event history to find the flavor of the parton from which the jet originated. More precisely, if a
b quark with pT > 5 GeV is found in the Monte Carlo truth record within a cone of radius ∆R = 0.3
around the jet direction, the jet is labelled as a true b-jet. To quantify b-tagging performance one uses
the following variables: the tagging efficiency, defined as the fraction of true b-jets tagged as b-jets
over the total number of taggable4 b-jets and the mis-tagging rate, defined as the fraction of true
b-jets that are not b-tagged over the total number of taggable b-jets. The performance of a b-tagging
algorithm is usually given as a function of tagging efficiency versus jet rejection, which is defined as
the inverse of the mis-tagging rate.
The identification of b-jets relies on the properties of b-quarks which distinguish them from light
quarks. For instance, B-hadrons retain a large fraction of the original b quark momentum and their
decay products can have a large pT with respect to the jet axis (prel

T ), due to the high mass of the b
quark. Most importantly, B-hadrons are relatively long-lived, which means that a B-meson produced
at the primary vertex will travel a distance 〈l〉 = βγcτ ∼ mm before decaying, thus producing a
displaced secondary vertex (on the contrary light-flavored hadrons are short lived and decay in the
primary vertex). One can distinguish thus three main categories of tagging algorithms used in ATLAS:
impact parameter taggers, secondary vertex taggers and soft lepton taggers.
Impact parameter tagging algorithms measure the impact parameter (i.e. the point of closest ap-
proach) of tracks with respect to the primary vertex. Supposing that (x0, y0) is the point of closest
approach to the point of interaction (0, 0), one can define a transverse impact parameter on the (x, y)
plane as

d0 = −x0 sin φ + y0 cos φ. (4.3)

2The significance Γ is defined as the signal-to-noise ratio, i.e. Γ = Ecell/σnoise,cell.
3See Chapter 1.
4A jet is considered as taggable if it passes the cuts pT > 15 GeV and |η| < 2.5.
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In the same way one defines a longitudinal impact parameter on the plane (R, z) by

dz = (zV − z0) sin θ, (4.4)

where zV is the z coordinate of the primary vertex, and z0 is the z coordinate of the trace at the
point of closest approach. A large d0 allows the identification of particles coming from the decay of a
B-hadron. If one further defines

sign(d0) =
(

~Pj × ~Pt

)

·
[

~Pt ×
(

~XPV − ~Xt

)]

, (4.5)

where ~Pj , ~Pt are respectively the jet and track directions measured by the calorimeters and ~Xt, ~XPV

are the positions of the tracks and primary vertex respectively, it turns out that tracks coming from
heavy flavored hadrons tend to have a positive sign while the sign of tracks from light flavored hadrons
is random [8]. In the same way one defines a sign for the longitudinal impact parameter by

sign(dz) = (ηj − ηt)z0t. (4.6)

Thus one can define 3 impact parameter taggers: IP1D relying on dz, IP2D relying on d0 and IP3D
combining the previous two.
Secondary vertex taggers are based on the explicit (inclusive or exclusive) reconstruction of the
secondary interaction vertex, pertaining to the decay of B-hadrons. To reconstruct an inclusive
secondary vertex, one starts with building two-track pairs that form a vertex with L3D

σL3D

> 2 and

L3D ≡ || ~XPV − ~Xt||. All remaining tracks are combined in an inclusive vertex iteratively until the χ2

of the fit is good. One studies the following properties of secondary vertices: the invariant mass of
tracks associated to the vertex, the ratio of the sum of the energies of the tracks participating to the
vertex to the sum of the energies of all tracks in the jet and the number of two-track vertices. The
SV1 algorithm uses a 2D-distribution of the two first variables and a 1D-distribution of the number
of two-track vertices, while the SV2 algorithm is based on a 3D-histogram of the three properties.
The JetFitter algorithm uses information on the topological structure of weak decays of beauty and
charmed hadrons.
Lastly soft lepton taggers rely on the identification of leptons coming from leptonic decays of heavy
flavored hadrons inside the jet. The procedure relies on the reconstruction of soft leptons and their
matching to heavy-flavored jets. Soft leptons are reconstructed by a combination of 2 algorithms. A
combined muon for instance corresponds to a track fully reconstructed in the muon spectrometer which
is matched to a track in the inner detector. The applied cuts for combined muons are pT > 3 GeV,
|d0| < 4 mm and ∆R < 0.5, where ∆R =

√

(∆η)2 + (∆φ)2 is the distance from the jet axis. Af-
ter soft lepton reconstruction and matching, a likelihood ratio is used to distinguish heavy-flavored
from light-flavored jets5. This technique is limited by the leptonic branching ratios of heavy quarks
but exhibits a very high purity and low correlations with track-based algorithms making it ideal for
cross-calibration.

4.3 Energy Scales

The determination of the kinematics of the particles produced in a collision event is of prime impor-
tance for physics analyses. Particle kinematics is determined by the tracking system (trajectories), the
calorimeter system (energy) and muon spectrometers. Here we will focus on the calorimeter system
and hence the determination of the energy of different objects.
In an experiment one measures two main classes of objects: electromagnetic objects (photons, charged

5For details see [8] and references therein.
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leptons) and QCD objects (hadons and jets). An experimental measurement consists of electronic sig-
nals coming from different parts of the detector. In order to compare the experimental measurement
with the theoretical calculations, one must then convert these electronic signals to physical quantities
(here, the amount of energy deposited in the calorimeters). This calibration produces a distinct energy
scale for each class of objects. We thus refer to objects measured in the electromagnetic (EM) scale
and the hadronic and jet energy scales.

EM Scale

The determination of the EM scale consists mainly in reducing the ECAL output signals to the
energy deposited in the calorimeter cells. This can be done by studying either single particles or
well-documented resonances such as Z → e−e+6. In the latter case the calibration can be done by
imposing the constraint that the invariant mass of the decay products be the same as the measured
resonance mass.
The energy deposited by a particle in the EM calorimeter is given by

Ecal = Ccal(X, η) (1 + fout(X, η)) Ecl,

X =

∑3
i=1 EiXi + EpsXps
∑3

i=1 Ei + Eps

. (4.7)

where Ecl is the energy deposited in a given cluster (only in the ionization medium), X is the lon-
gitudinal barycenter of shower depth expressed in radiation lengths computed from the centre of the
detector, η is the cluster barycenter, fout is the fraction of the energy deposited outside the cluster and
Ccal is the calibration factor defined as the ratio between the true energy deposited in the calorimeter
(absorbers and ionization medium) and the reconstructed energy Ecl.
The corrections are derived by Monte Carlo and tested with test beams (e ,µ ,π for the electomagnetic
calorimeter or stable hadrons for the calibration of the hadronic calorimeter). The calibration factor
derived by test beam data is in excellent agreement with Monte Carlo results.

Jet Energy Scale

The precise definition of the Jet Energy Scale (JES) is important for numerous physics measurements,
such as the determination of the top mass mt, the reconstruction of jet resonances, the measurement
of inclusive jet cross sections and the quality of missing transverse energy measurements which is of
paramount importance for new physics searches at the LHC.
The ultimate goal of JES corrections is the reconstruction of the initial parton energy from calorimeter
jets. This procedure is divided into two steps: (a) correcting calorimeter jets to particle jets and (b)
correcting particle jets to initial partons7. In the first step, one has to account for all detector-
specific effects, such as calorimeter non-compensation, electronics noise, losses due to cracks and dead
material, etc. In the second step one corrects for physics effects, such as initial and final state radiation,
clustering, hadronization effects, pileup, flavor dependency of JES corrections etc.
The basic idea behind JES corrections is to assume a known EM scale and use events containing a
well-measured EM object balanced by jets to determine the jet response. This involves a number of
sub-corrections which are applied in a sequential manner, as described by the formula:

Ecorr
jet =

Emeas
jet − O

Fη · R · S kbias. (4.8)

6The process Z → e−e+ is a prime example of a benchmark process: it has very low background, the Z mass has
been measured with a good accuracy and its decay products leave big energy deposits in the ECAL. See [17] for more
details.

7In many cases JES is established on the particle level and one does not attempt to trace this procedure back to the
parton level.
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The first step, called offset correction (O), is to subtract the energy not associated to the hard scatter
(i.e. underlying event, noise, multiple interactions and signal pileup). The absolute jet response R is
given by

R = 1 +
/ET · ~p γ

T
(

~p γ
T

)2 , (4.9)

where /ET is the missing transverse energy and ~p γ
T is the momentum of the photon measured in back-

to-back γ+jets events. The relative response correction Fη (or η-intercalibration) accounts for non-
uniformities in the response as a function of pseudorapidity. The showering correction S corrects for
energy leakage outside (inside) the jet cone from particles inside (outside) the jet cone. This parameter
depends on the jet reconstruction algorithm and for the kT -class of algorithms S = 1. Lastly, kbias

represents any additional biases, such as minimum bias events that pass the zero suppression threshold
or biases related to the determination of the absolute response correction.
In the ATLAS implementation of JES corrections one does not take into account the offset correction.
The rest of the correction factors have been derived by Monte Carlo studies and are parametrized by
the formula

Rjet =
[

1 + a1(η)(ln pT )−1 + a2(η)(ln pT )−2 + a3(η)(ln pT )−3 + a4(η)(ln pT )−4
]

−1
. (4.10)

The corrected energy and transverse momentum of the jet are then given by

Ecorr =

√

p2
T (R2 − 1) + E2(1 − tanh2 η)

1 − tanh2 η
,

pTcorr = RpT . (4.11)

Muonic Jet Energy Scale

A significant improvement on the jet energy scale can be achieved by identifying jets which contain
neutrinos. More precisely, since neutrinos cannot be detected, they introduce a systematic underesti-
mation of the pT of the jet, which is estimated to be of the order of 10% [18]. Here we will restrict
our attention to the study of muonic decays of b-jets.
At the parton level, a b-quark almost always decays to a c quark, which in turn decays into an s or a
d quark. The W bosons produced in the process can decay either hadronically to qq̄ or leptonically
to l+νl (cascade decay) or l−ν̄l (direct decay). Bottom jets are consequently classified into 3 cate-
gories according to their decay modes: (i) hadronic, if both W ’s decay hadronically, (ii) semileptonic,
if only one of the W ’s decays into leptons and (iii) leptonic, if both W ’s decay leptonically. Tak-
ing into account the hadronic and leptonic branching ratios of the W bosons, which are respectively
B(qq̄) = 2/3 and B(lν) = 1/3, we find that the probability that a b-jet decay semileptonically is
Psemileptonic = 4/9 ≈ 44.44% and for a fully leptonic decay Pleptonic = 1/9 ≈ 11.11%. If we fur-
ther demand that the lepton be of a specific flavor (e.g. muon8) the respective probabilities become
Psemimuonic = 12/81 ≈ 14.8% and Pmuonic = 1/81 ≈ 1.2%. We immediately observe that, in more
than half of the cases, a b-jet will contain at least one neutrino and given the non-negligible pT frac-
tion carried by the neutrino, we conclude that neglecting leptonic corrections can lead to a significant
degradation of the jet energy scale.
Since muons are most easily identifiable among leptons, a first step towards a better determination of
the jet energy is the muonic jet energy scale (JESMU). The basic idea behind JESMU involves tagging
b-jets that contain muons and correcting the jet energy scale through a parametrization of the energy
carried away by the neutrino. JESMU corrections are entirely based on Monte Carlo studies and the

8Here, the term semimuonic is used with an exclusive meaning, i.e. it designates jets containing exactly one muon
and no other leptons. Later the term semimuonic will be used with an inclusive meaning.
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procedure is detailed below.
The JESMU corrections are established using b-jets from a tt̄ sample. Performance is studied on tt̄
samples as well as bb̄ samples constructed from dijet samples. Lastly the impact of JESMU correc-
tions can be studied by reconstructing the invariant mass of bb̄ pairs coming from the decay of Higgs
bosons. The official ATLAS JESMU corrections were derived for

√
s = 14 TeV using the following

setup [18]. Muons were reconstructed with the Staco algorithm9 [19], jet reconstruction was based on
a topocluster seeded cone algorithm [20] and b-tagging was based on a soft muon tagger10. A b-jet is
considered semileptonic if a muon neutrino coming from a B or D-hadron is found in the decay chain
of the original b-quark.
The energy of the neutrino can be calculated from Monte Carlo and parametrized in terms of b-jet
and muon kinematics. The contribution of the neutrino transverse momentum to the total pT of the
jet depends on its angle with respect to the jet axis. This angle is not strongly correlated with muon
and jet kinematics, so it cannot be estimated accurately. The neutrino energy doesn’t provide any
angular information, so it can neither be used to parametrize the fraction of energy carried away by
the neutrino. To integrate angular correlations one uses the response function

Rsemileptonic =
pjet+µ

T,reco

pjet+µ+ν
T,True

, (4.12)

where pjet+µ
T,reco is the perpendicular component of the vector addition of the reconstructed jet and

reconstructed muon and pjet+µ+ν
T,True is the perpendicular component of the vector addition of the true

jet, true muon and true neutrino momenta. The corrected pT is then given by

~p corr
T = C~p jet+µ

T reco , (4.13)

with
C = 〈Rsemileptonic〉−1 (4.14)

calculated in different pµ
T,reco/p

jet
T,reco bins to integrate the angular correlations between neutrino and

jet-muon kinematics and 〈Rsemileptonic〉 representing the mean of the gaussian fit to the Rsemileptonic

distribution.

4.4 Correction validation

In this section we will study the impact of the JES corrections described above in the reconstruction
of the invariant mass of a bb̄ pair coming from the decay of a Higgs boson with mass mH = 120 GeV.
The Monte Carlo samples used in this study are

mc09 7TeV.105872.WH120bb pythia.merge.AOD.e521 s765 s767 r1302 r1306

mc09 7TeV.105872.WH120bb pythia.merge.AOD.e521 s765 s767 r1250 r1260.

with a total statistics of 99980 events. Datasets have been reprocessed with the B-Tagging ntuple
format. These samples contain events coming from the decay chain qq̄ → W → WH → (lνl)(bb̄),
where b quarks fragment and hadronize into b-jets and can further decay either (semi-)leptonically or
hadronically. The invariant mass of the bb̄ system is given by

m =
√

(E1 + E2)2 − (px,1 + px,2)2 − (py,1 + py,2)2 − (pz,1 + pz,2)2 (4.15)

9Staco muons are muons reconstructed in the muon spectrometer and matched in an inner detector track.
10See section 4.2 above. In [18], b-tagging required the existence of a b-quark in the Monte Carlo truth record within

a radius ∆R < 0.3 from the jet axis.
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or in terms of available ntuple variables

m =
[

(E1 + E2)
2 − (pT,1 cos φ1 + pT,2 cos φ2)

2 − (pT,1 sinφ1 + pT,2 sin φ2)
2

− (E1 tanh η1 + E2 tanh η2)
2
]1/2

, (4.16)

where indices 1, 2 refer to the leading and subleading b-jet and φi, ηi are the azimuth and pseudo-
rapidity of the i-th b-jet with respect to the beam axis. Quantities in the ntuples are measured in
the Electromagnetic Scale. To show the effect of JES and JESMU corrections, the invariant mass
reconstruction is carried out in 3 steps

1. No corrections applied (EM scale)

2. Application of Jet Energy Scale corrections

3. Application of Muonic Jet Energy Scale corrections

The cleaning cuts applied to the sample are

• exactly 2 b-jets in event

• at least 1 reconstructed primary vertex

• at least 2 reconstructed tracks associated to leading and subleading b-jets

• |η1| < 2.5 and |η2| < 2.5

• ∆Rb−jets > 0.8

where

∆Rb−jets =
√

(∆ηb−jets)2 + (∆φb−jets)2

∆ηb−jets = |η1 − η2| (4.17)

∆φb−jets = min (|φ1 − φ2| , |2π − |φ1 − φ2||) .

The first cut is applied in order to eliminate b-jets originating from gluonic bremsstrahlung11. The
cut in pseudorapidity ensures that the analyzed b-jets are within the η-coverage limits of the Inner
Detector and Calorimeter regions where precision measurements can be performed. The last cut is
applied in order to ensure that the analyzed b-jets are two distinct objects12.
It was observed that the sample is contaminated with low-pT light-flavored jets that contribute to
low-energetic tails in the invariant mass spectrum. A percentage of b-jets with very low pT can also
contribute to these tails. Thus in order to obtain a symmetric peak, we are forced to introduce a
further kinematic cut on the pT of light-flavored and b-tagged jets

• pT,1 > 10 GeV and pT,2 > 10 GeV (EM scale)

• pT,1 > 20 GeV and pT,2 > 20 GeV and pT,LF > 10 GeV (after JES and JESMU corrections)

11We note that b-jets coming from gluonic bremsstrahlung tend to have low-pT , while the invariant mass reconstruction
uses only the leading and subleading (high-pt) b-jets.

12We remind that b-jets are reconstructed with a cone of radius R = 0.4. We have observed that there were some
events containing b-jets with overlapping jet cones.



18 MEASUREMENT OF THE bb̄ CROSS SECTION

where pT,i, pT,LF is the transverse momentum of the i-th b-jet and light-flavored jets respectively. For
the study of muonic jet energy scale corrections, one needs to define different categories according
to the decay modes of b-jets. In principle, given enough statistics, one could define these categories
in an exclusive manner. However in this study and in the official ATLAS study study of JESMU
corrections [18], all categories were defined in an inclusive manner, with respect to muons and muonic
neutrinos found in the Monte Carlo truth record13. These are detailed in the following table.

Category Definition

inclusive all events that pass cleaning cuts are considered
had had no µ and no νµ in b-jets
had 1mu exactly 1 µ or exactly 1 νµ in one b-jet and no µ and no νµ in remaining b-jet

Since the b-jets originate from an unstable resonance, we expect that the b-jet invariant mass follow
a Breit-Wigner distribution. However, since we are studying reconstructed jets, i.e. jets after inter-
action with the detector, we expect the detector’s response to affect the form of the invariant mass
distribution. Since the detector’s response is largely Gaussian, we choose to fit the invariant mass
distribution with a (non-relativistic) Breit-Wigner distribution convoluted with a Gaussian, i.e. a
Voigt distribution

V (x;σ,Γ) =

∫ +∞

−∞

e−(x−x′)2/2σ2

σ
√

2π

Γ/2

π(x′2 + Γ2/4)
dx′, (4.18)

where σ is the standard deviation of the Gaussian distribution and Γ is the decay width of the
resonance (both distributions are centered at x0 = 0). In what follows we will only concentrate on
the determination of the expectation value and the standard deviation of the Voigtian distribution,
which express the resonance mass and the energy resolution respectively. For this reason we hold the
decay width fixed to its default PYTHIA value ΓH = 3.081 MeV. The fit covers the Full Width at
Half Maximum of the Voigt distribution. The fit results for each of the three steps described above
are given in the tables below.

EM Scale fits

Category
HISTO FIT

MPV RMS Peak Γ σ χ2/ndf

Inclusive 62.02 15.16 63.39 ± 0.11 3.081 14.57 ± 0.15 35.58/16

had had 65 15.29 67.03 ± 0.13 3.081 12.84 ± 0.19 35.67/14

had 1mu 56.19 16.84 57.4 ± 0.2 3.081 16.57 ± 0.26 46.31/18

The presence of undetected neutrinos in semileptonic b-jets (had 1mu) causes (a) a shift of the invariant
mass towards lower values and (b) a deterioration of the energy resolution, as expected.

JES correction fits

Category
HISTO FIT

MPV RMS Peak Γ σ χ2/ndf

Inclusive 97.3 19.5 100.8 ± 0.2 3.081 17.1 ± 0.3 32.15/18

had had 101.3 18.62 104.7 ± 0.2 3.081 14.74 ± 0.33 35.19/16

had 1mu 89.55 20.7 91.91 ± 0.42 3.081 20.5 ± 0.7 33.11/21

13We note that in [18] the definition of respective categories relied only on muonic neutrinos. Here for technical reasons
we were forced to use muons in addition to muonic neutrinos so as to increase the statistics.



4.4. Correction validation 19

We observe that the application of JES corrections shifts the invariant mass peaks by a factor ∼ 1.6.
We notice however a deviation of the peak in the case of a completely hadronic decay (had had) with
respect to the expected value mH = 120 GeV. This indicates that JES corrections give a satisfactory
but not completely accurate estimate of the Jet Energy Scale. This however is to be expected, since
JES corrections were derived solely from Monte Carlo studies, leaving ample room for improvement
(cross-checking with data, possibly further refining corrections on a parton level).
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Appendix A

THE ATLAS DETECTOR

FIGURE A.1: Layout of the ATLAS detector.
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FIGURE A.2: Layout of the Inner Detector.

FIGURE A.3: Layout of the Calorimeter system.



Appendix B

JES CORRECTION VALIDATION FITS

FIGURE B.1: EM Scale inclusive
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FIGURE B.2: EM Scale hadronic

FIGURE B.3: EM Scale semimuonic
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FIGURE B.4: JES inclusive

FIGURE B.5: JES hadronic
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FIGURE B.6: JES semimuonic



Conclusions and Prospects

We calculated the cross section for inclusive bottom production at NLO order both with and without
NLL resummation at

√
s = 7 TeV using the FONLL public code. We found that NLL resummation

provides an enhancement by 5.6% of the total cross section obtained at Fixed Order (no resum-
mation) while reducing the uncertainty band at high-pT . The result obtained was σ(0.1 ≤ pT ≤
1000 GeV) = 266

+39(14.7%)
−45(16.9%) pb. We also showed that Jet Energy Scale corrections originally derived

for
√

s = 14 TeV are also valid for
√

s = 7 TeV.
This work could be further extended and refined in various ways. As we showed, cross section un-
certainties are mainly due to PDF-related uncertainties. Thus using a more recent PDF set from the
LHAPDF library is expected to reduce the total cross section uncertainty. Following the procedure
described in Section 3.2 one could also calculate the total cross section for inclusive b-jet production
in a straightforward manner. Lastly, JESMU corrections originally derived for

√
s = 14 TeV remain

to be validated for
√

s = 7 TeV using the procedure detailed in Section 4.4.
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