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Abstract

The goal of this thesis is twofold: (i) the study of the infrared and collinear region in tt̄jj events
and (ii) the NLO calculation of Wbb̄ with the aMC@NLO software for the ATLAS experiment. An
overview of the Standard Model with particular emphasis on QCD is given and the theoretical tools
used in precision QCD calculations are presented. The LHC accelerator and the ATLAS detector
and Data Acquisition System are briefly described. The soft and collinear region in tt̄jj events is
studied using matrix element and parton-shower calculations provided by Alpgen and HERWIG. The
region of dominance of the two components is established, by comparing the matrix element with the
parton-shower spectra. After a brief description of the aMC@NLO generator, a consistency check is
performed on an existing Z/γ∗bb̄ parton-level sample. This consists in reproducing the results found
in [1]. A NLO calculation of Wbb̄ including an off-diagonal CKM matrix and decays to all lepton
families is presented. The calculation assumes massive b quarks and also includes spin-correlations
and off-shell effects, as presented in [1]. The aMC@NLO prediction for Wbb̄ production is compared
against the recent ATLAS measurement [2] of the cross section for the production of a W boson in
association with one or two b jets.
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Chapter 1

THEORETICAL INTRODUCTION

“Had I foreseen that, I would have gone into botany.”
Attributed to W. Pauli.

1.1 The Standard Model

Our current understanding of High Energy Physics can be summarized in the theory known as the
Standard Model [3]. The Standard Model describes collectively the electromagnetic, weak and strong
interactions between the fundamental constituents of matter, quarks and leptons. In mathematical
terms, the Standard Model is a non-Abelian gauge theory based on the symmetry group SU(3) ×
SU(2)L × U(1)Y . As a gauge theory, the Standard Model is based on the fundamental concept of
gauge symmetries. Unlike global symmetries, gauge symmetries are not new symmetries of nature,
in the sense that they don’t imply the existence of new conserved charges. However, their existence
is of a much deeper significance, since they determine in a unique way how the the fields (particles)
interact.
The development of the Standard Model proved to be difficult, due to the fact that gauge symmetries
can be broken, i.e. they may not be manifest in physical observables. Symmetry breaking in the
form of phase transitions was well known in classical physics and had been formalized by Landau
[4, 5]. Considering for instance a ferromagnet, we know that, above the Curie temperature, the net
magnetization is zero, the spins are randomly oriented and the system displays a symmetry under
SO(3) transformations (3-dimensional rotations). Below the Curie temperature, the system obtains a
net magnetization with the spins pointing along a certain direction and the symmetry being reduced
(“broken”) from SO(3) to SO(2) (rotations about the external field direction). In this less symmetric
phase, one needs additional degrees of freedom1 in order to describe the system. These have been
dubbed order parameters. In an analogous way, Higgs, Brout, Englert, Guralnik, Hagen and Kibble
proposed a way to apply these principles in systems of quantum fields [6–10]. Glashow, Weinberg and
Salam then applied the idea of symmetry breaking into the description of the electromagnetic and
weak interactions as a unified gauge field theory.
In the electroweak theory [11–13], one starts from a symmetric phase which is invariant under the
transformations of the gauge group SU(2)L×U(1)Y , where Y = 2(Q−I3) is the hypercharge, Q is the
charge and I3 the projection of the isospin along the z axis. Along with the electroweak gauge bosons,
the electroweak theory predicts the existence of a scalar field (dubbed the Higgs field), which plays
the role of the order parameter of the theory. Below a certain energy scale, the Higgs field acquires
a non-zero vacuum expectation value and the SU(2)L × U(1)Y symmetry is broken down to U(1)Q,
which is the gauge symmetry of electromagnetism. In the process, the weak bosons acquire masses
and appear thus to be non-invariant under the gauge transformations. The electroweak theory has

1In this case the net magnetization.

1



2 THEORETICAL INTRODUCTION

been consolidated by the discovery of the neutral current interactions and the W and Z bosons by
the Gargamelle and UA1 experiments at CERN. This paved the way towards the construction of the
Standard Model, which started with the works of Glashow, Weinberg and Salam [11–13].
The development of Quantum Chromodynamics (QCD) as the gauge theory of strong interactions
began with the introduction of the quark model for the classification of hadron resonances [14, 15].
The colour charge was introduced as a new degree of freedom in an attempt to solve the ∆++ puzzle,
i.e. to allow for the existence of resonances with antisymmetric wave-functions comprised of three
quarks with identical flavour and spin [16]. The measurement of the cross-section ratio σ(e−e+ →
hadrons)/σ(e−e+ → µ−µ+) at SLAC [17] provided evidence for the existence of three colours and the
discovery of 3-jet events in e−e+ collisions by the TASSO experiment at DESY [18] established the
existence of gluons thus proving that the strong interactions could be described as a gauge theory
with a SU(3) symmetry group.
The Standard Model accommodates twelve fundamental fermions of spin 1/2 that are divided into
two categories - leptons which do not interact with strong interactions and quarks which interact
with strong interactions and come in three colours - and three generations, as shown in Table 1.1.
To each of these particles one associates an antiparticle by charge conjugation. The fundamental

TABLE 1.1: The Standard Model fermion families.

Fermion Generation Leptons Quarks

I

e−L
νe,L

ur, ug, ub

dr, dg, db

II

µ−
L

νµ,L

cr, cg, cb

sr, sg, sb

III

τ−L
ντ,L

tr, tg, tb

br, bg, bb

fermions are described by different representations of the Standard Model gauge group GSM = SU(3)×
SU(2)L × U(1)Y . Right-handed quarks and right-handed leptons are SU(2) singlets and the right-
handed neutrinos are GSM singlets. Fermion interactions are mediated by the gauge bosons shown in
Table 1.2, that transform under the adjoint representation2 of GSM . The Standard Model also predicts

TABLE 1.2: The Standard Model gauge bosons.

Interaction Gauge Boson

Electromagnetic γ

Weak W±, Z0

Strong g1, . . . , g8

the existence of a Higgs boson, which is a spin 0 SU(2) doublet with weak hypercharge Y = −1. Its
discovery is the main goal of the physics program of the LHC.

2The adjoint representation is the representation whose matrix elements are given by the structure constants of the
algebra.



1.2. QCD as the gauge theory of strong interactions 3

1.2 QCD as the gauge theory of strong interactions

The QCD Lagrangian is comprised of two parts: the part that describes the gauge bosons (gluons) and
the part that describes the fermions which transform in a representation of the gauge group (quarks).
One can schematically write3

L0QCD = L0YM + L0Dirac, (1.1)

with

L0YM = −1

4
Tr
[

F 0
µνF

0,µν
]

, (1.2)

L0Dirac =
∑

i

Ψ̄i

(

i/∂ −mi

)

Ψi, (1.3)

where F 0,µν
α = ∂µAν

α − ∂νAµ
α is the field strength and the indices a and i run over the colour charges

and the fermion flavours respectively. This Lagrangian describes freely propagating gluons and quarks
without interactions and it is not invariant under SU(3) gauge transformations. By introducing a

local infinitesimal SU(3) transformation on the quark fields Ψ′
i = exp

(

igλa [ta]
j
i

)

Ψj ,

Ψ′
i −Ψi = δΨi = igλa(x) [ta]

j
i Ψj, (1.4)

where ta are the SU(3) generators4. Then

∂µ(δΨi) = igλa [ta]
j
i ∂µΨj + ig (∂µλ

a) [ta]
j
i Ψj, (1.5)

with the second term in (1.5) spoiling the gauge invariance. In order to restore the gauge invariance,
one has to replace ∂µ with the covariant derivative ∇µ ≡ ∂µ − igAa

µ [ta]
j
i , where Aa

µ must transform
according to5

δAa
µ = ∂µΛ

a + ig [Λ, Aµ]

= ∂µΛ
a + gCa

bcΛ
cAb

µ ≡ ∇µΛ
a. (1.6)

Thus demanding invariance under local SU(3) transformations leads to the introduction of a new
gauge field which has to transform in the adjoint representation of the gauge group6 as dictated by
(1.6). With this modification, the interacting QCD Lagrangian becomes

LQCD = −1

4
Tr [FµνF

µν ] +
∑

i

Ψ̄i

(

i /∇−mi

)

Ψi, (1.7)

Fµν = ∇µAν −∇νAµ = ∂µAν − ∂νAµ − ig [Aµ, Aν ] . (1.8)

Intuitively, one can picture the gauging procedure described above by drawing an analogy to general
relativity. In order to compare vectors attached to different points on a curved surface, one has to
introduce the notion of parallel transport. The effects of the parallel transport from point to point
can then be described by the Christoffel symbols (affine connection). Also parallel transport along a
closed contour provides a measure of the curvature of space-time and is described by the Riemann

3Upon attempting to quantize the QCD Lagrangian, one has to add an additional gauge fixing term, in order to
eliminate unphysical degrees of freedom from the spectrum. This is not of crucial importance for the following discussion
and will not be treated here.

4We remind that a well-known representation of ta is given by the Gell-Mann matrices.
5In matrix notation we have Λij = λa [ta]

j

i
and Aij

µ =
[

Aa
µta

]j

i
. By definition, the covariant derivative must satisfy

δ(∇µΨi) = igΛj
i (∇µΨj).

6The adjoint representation is defined by [ta]
c

b
≡ iCc

ab, where Cc
ab are the structure constants of the gauge group.
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curvature tensor. An analogous picture for QCD is illustrated in Fig. 1.1. The QCD fields take
values on a base space, which is the 4-dimensional Minkowski space-time of special relativity. At every
space-time point there is a fibre, that is a copy of the gauge group SU(3). In order to compare quark
fields at different space-time points, one has to introduce a connection, namely the gluon fields, that
determines how the quark fields must be transported from one point to another. In this sense, the
analogues of the Christoffel symbols are given by the gluon fields and the analogue of the curvature is
given by the field strength Fµν .

FIGURE 1.1: QCD as a hairbrush (fibre bundle). The handle (base space) is identified with the
4-dimensional Minkowski space-time and the bristles (fibres) are identified with the SU(3) group. The
gauge fields (connection) determine how quark fields are parallel-transported from point to point.

1.2.1 Perturbative QCD

From (1.7),(1.8) one can derive the Feynman rules for QCD [19]. These rules are depicted in Fig. 1.2.
The gluon, quark and ghost propagators in a covariant gauge are,

Dµν
ba (k) = i

δba
k2 + iǫ

[

−gµν +
(

1− 1

λ

)

kµkν

k2 + iǫ

]

, (1.9)

Sij
βα(k) = i

δij
k2 −m2 + iǫ

[/k +m]βα , (1.10)

Gba(k) = i
δba

k2 + iǫ.
(1.11)

The QCD vertices are,

(i) : −ig [tc] ij [γµ]βα (1.12)

(ii) : gCabck
′
a (1.13)

(iii) : −gCa1a2a4 [g
ν1ν2(p1 − p2)

ν3 + gν2ν3(p2 − p3)
ν1 + gν3ν1(p3 − p1)

ν2 ] (1.14)

(iv) : −ig2 [Cea1a2Cea3a4 (g
ν1ν3gν2ν4 − gν1ν4gν2ν3)

+Cea1a3Cea4a2 (g
ν1ν4gν3ν2 − gν1ν2gν3ν4)

+ Cea1a4Cea2a3 (g
ν1ν2gν4ν3 − gν1ν3gν4ν2)] (1.15)

Using these rules one can calculate the invariant matrix elementM, which represents the non-trivial
part of the scattering matrix7 and expresses the dynamics of the interactions that come into play.

7For an interacting quantum field theory, the scattering matrix relates asymptotic incoming and outgoing states Ψ(α),
described by the set of quantum numbers α, through the relation Sβα ≡ 〈Ψout(β)|Ψin(α)〉. In terms of the invariant

matrix element M, the scattering matrix can be written as Sβα = δβα + iTβα with iT = (2π)4δ(4)
(

∑

i
pi −

∑

f
pf

)

iM.
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The cross section is then built up by convolving the dynamics with the kinematics. For a process
p1p2 → k1 . . . kn, the cross section is,

dσ =
1

F
|M|2dΦn, (1.16)

where F is the incoming particle flux and dΦn is the n-particle final state phase space. Since the
scattering matrix cannot be calculated analytically in QCD, one resorts to perturbation theory. The
scattering matrix takes the form

S = 1+ αsC + α2
sC

2 + . . . , (1.17)

where αs is the strong coupling constant αs ≡ g2/4π and the factors C incorporate the Feynman
diagram calculations. If αs is small, it is sufficient to retain only the first few terms to approximate
the complete solution. As a consequence of vacuum polarization, αs is not fixed, but it evolves with
energy. This evolution is governed by the renormalization group equation, which reads

β (g(µ)) ≡ µ
dg(µ)

dµ
= −g

[

αs

4π
β1 +

(αs

4π

)2
β2 + . . .

]

≈ −g αs

4π

(

11− 2Nf

3

)

, (1.18)

where βi are the i-loop contributions to the beta function, µ is an energy scale, Nf is the number of
flavours and the last approximation refers to the 1-loop calculation. Solving for αs one obtains

αs(µ
2) =

αs(µ
2
0)

1 +
αs(µ2

0)
4π

(

11− 2Nf

3

)

ln µ2

µ2
0

. (1.19)

From (1.19) we can see that αs grows with decreasing energy. As shown in Fig. 1.3, αs is large for
energies of the order of the proton mass. Therefore, at values of αs close to the hadronization scale
(∼ 1 GeV), perturbation theory cannot be trusted. In practice, the coefficients C can be ill-behaved,
e.g. they can contain large logarithms.

FIGURE 1.2: The Feynman rules for QCD [19].

1.2.2 From partons to hadrons

In the previous sections, the theory was set-up using quarks and gluons as the fundamental degrees
of freedom. However, except for the top quark, experimentally one sees only colourless degrees of
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FIGURE 1.3: The QCD running coupling [20].

freedom, i.e. hadrons. Here we explain how we can use the parton level calculations to extract results
for hadron observables.
It was first proposed by Feynman [21], that lepton-hadron scattering in the limit of large momentum
transfer can be explained by the parton model, where the hadron is replaced by fundamental point-like
constituents8. As it was further elaborated by Bjorken and Paschos [22], the essential ingredient of
the parton model is to consider a class of infinite momentum frames, in which a parton i will carry a
fraction 0 < xi < 1 of the hadron’s momentum. Lepton-hadron scattering can then be described by
an incoherent sum9 of all the possible lepton-parton scatterings. This idea was reversed by Drell and
Yan [23] in the study of what is today known as the Drell-Yan process (i.e. lepton hadroproduction).
It was there postulated that the hadronic cross section σ(H1H2 → µ+µ− +X) could be obtained by
convolving the cross section for hard-scattering subprocess σ̂(qq̄ → µ+µ−) with the Parton Distribution
Functions fi/H1

σH1H2 =
∑

i,j

∫

dx1dx2fi/H1
(x1)fj/H2

(x2)σ̂(ij → µ+µ−). (1.20)

The PDFs fi/H(x) express the probability of finding a parton i inside the hadron H, carrying a
momentum fraction x. The domain of validity of (1.20) is the asymptotic scaling limit: s = Q2 →
∞, x fixed. It was later discovered in SLAC and PETRA experiments that the cross sections in
hadron scattering do not scale according to (1.20), but instead display a logarithmic dependence on
the annihilation energy. The appearance of these logarithms was attributed to the emission of gluons
that were collinear to the incoming beam and it was shown that such contributions could be factored
into the the PDFs, with (1.20) becoming

σH1H2 =
∑

i,j

∫

dx1dx2fi/H1
(x1, Q

2)fj/H2
(x2, Q

2)σ̂(ij → µ+µ−), (1.21)

where Q is a momentum scale which characterizes the hard subprocess. Eq (1.21) is an example of
theorems called factorization theorems [24] which essentially express the fact that in certain kinematic

8These were later identified with the QCD quarks and gluons.
9Incoherent sum is a sum which does not include interference terms.
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regimes the non-perturbative dynamics can be separated from the perturbative dynamics. Let us see
how one obtains (1.21).

The DGLAP equations

A complete derivation of how the scaling violations are obtained from QCD goes outside the scope of
this thesis. Here we sketch the most important points in the proof and for further details we refer the
reader to QCD textbooks such as [25]. One of the fundamental ideas of QFT is the fact that there
are no bare fields (or point-like particles). Everything is instead surrounded by a cloud of fermion-
antifermion pairs and gauge bosons. The näıve parton model, in which exact scaling holds, is based on
the assumption that partons are point-like objects. In this case the electromagnetic structure function
reads

F2(x) =
∑

q

e2qxfq(x). (1.22)

Scaling violations arise naturally when one abandons the concept of point-like partons and adopts
the correct field-theoretic concept of “dressed” particles. The first step in this way is to consider the
NLO correction to (1.20) or in more physical terms, consider that the quarks participating in the
interactions can branch, i.e. emit a gluon (Fig. 1.4). If in the no-branching case we have n particles

FIGURE 1.4: NLO corrections to qq̄ → l+l−.

in the final state, after the branching the final state consists of (n + 1) particles. The cross section
then reads [25]

dσn+1 = dσn
αs

2π
P̂ij(z)

dt

t
dz, (1.23)

where z is the fraction of energy carried away by the gluon, t is the virtuality of the quark propagator
and P̂ij is the unregularized splitting function that describes the probability of the i → j parton
splitting. In the case of massless q → q branching, it reads

P̂qq(z) = CF
1 + z2

1− z
, (1.24)

where CF = 4/3 is the colour factor associated to the corresponding Feynman diagram. From
(1.23),(1.24), we observe that the cross section has two types of singularities, in the limit t → 0
and z → 1. The latter is called an infrared singularity and corresponds to the emission of a very
soft quark. The former gives a collinear singularity and corresponds to the limit in which the gluon
is emitted parallel to one of the quarks10. The infrared singularity in (1.24) is compensated by the
virtual corrections at z = 1 and introducing the “plus distribution”

f(x)+ = f(x)− δ(1 − x)

∫ 1

0
dx′f(x′), (1.25)

one can write the regularized splitting function as the sum of the real and virtual contributions

Pqq(z) = CF

[

1 + z2

(1 − z)+
+

3

2
δ(1− z)

]

. (1.26)

10As we will see later in this chapter, in the limit of small-angle emission we have t = EiEjθ
2
j and thus the limit t → 0

with Ei, Ej 6= 0 corresponds to θj → 0.
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With these contributions (1.22) becomes

F2(x,Q
2) = x

∑

q

e2q

∫ 1

x

dξ

ξ
fq(ξ)

[

δ

(

1− x

ξ

)

+
αs

2π
Pqq

(

x

ξ

)

ln
Q2

κ2
+ C

(

x

ξ

)]

, (1.27)

where the logarithm comes from the t integration with a cutoff κ and C is a calculable function
which contains a finite contribution. The collinear singularity, which introduces the logarithmic Q2

dependence in the structure function corresponds to the long-range limit, where we know that αs is
big and perturbation theory is no longer valid. This singularity can be absorbed at a factorization
scale µF in a definition of a renormalized PDF

fq(x, µ
2
F ) = fq(x) +

αs

2π

∫ 1

x

dξ

ξ
fq(ξ)

[

P

(

x

ξ

)

ln
µ2
F

κ2
+ C

(

x

ξ

)]

. (1.28)

In terms of the renormalized PDF, the structure function (1.27) becomes

F2(x,Q
2) = x

∑

q

e2q

∫ 1

x

dξ

ξ
fq(ξ, µ

2
F )

[

δ

(

1− x

ξ

)

+
αs

2π
Pqq

(

x

ξ

)

ln
Q2

µ2
F

]

. (1.29)

The structure function being an observable, it cannot depend on non-physical scales such as µF . Thus
we should have

∂F2(x,Q
2)

∂ lnµ2
F

= 0, (1.30)

which leads to11 the evolution equation

t
∂

∂t
fq(x, t) =

αs

2π

∫ 1

x

dξ

ξ
Pqq

(

x

ξ

)

fq(ξ, t). (1.31)

More generally, considering all possible types of quark-gluon splittings, we arrive at the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi equations [26–29]

t
∂

∂t

(

fqi(x, t)

fg(x, t)

)

=
αs

2π

∑

j

∫ 1

x

dξ

ξ





Pqiqj

(

x
ξ , αs(t)

)

Pqig

(

x
ξ , αs(t)

)

Pgqj

(

x
ξ , αs(t)

)

Pgg

(

x
ξ , αs(t)

)





(

fqj(x, t)

fg(x, t)

)

. (1.32)

We note that although the DGLAP equations determine the evolution of the PDFs with the energy
transfer, the x-dependence can only be determined by data using (1.22). We further note that the
splitting functions have a perturbative expansion in αs

Pqiqj(z,αs) = δijP
(0)
qq (z) +

αs

2π
P (1)
qiqj(z) + . . . . (1.33)

In the derivations above we used the leading order expressions for the splitting functions12. The
DGLAP equations are the analogue of the beta function for the QCD running coupling (Eq. 1.18).

1.3 Going beyond the LO approximation

In the previous section we saw that it is necessary to go beyond the Leading Order in perturbation
theory in order to explain the scaling violations. We also saw that in order to deal with divergences
within perturbation theory, we need to introduce non-physical scales (cf. Eq. 1.18,1.29). If one retains

11We defined t ≡ µ2
F .

12Today the splitting functions are the only quantity calculated with N3LO precision in QCD.
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all the orders of the perturbative expansion these scale dependencies will cancel out, since physical
observables cannot depend on non-physical scales. However, truncating the perturbative expansion
at a certain order introduces a dependence on these scales. Let us see what happens if we make
a LO expansion. Consider a dimensionless physical observable O. We have seen that in order to
avoid divergences associated to higher-order effects, one needs to introduce an arbitrary scale µ in the
perturbative expansion. Then O will acquire a dependence on Q2/µ2, where Q is a large energy scale
and the renormalized coupling αs(µ

2). The perturbative expansion of O reads

O
(

Q2

µ2
= 1, αs(Q

2)

)

= O1αs(Q
2) +O2α

2
s(Q

2) + . . . . (1.34)

From (1.19) we have

αs(Q
2) = αs(µ

2)− b1 ln
Q2

µ2
α2
s(µ

2) + . . . , (1.35)

where b1 =
1
4π

(

11− 2Nf

3

)

. Thus (1.34) becomes

O
(

1, αs(Q
2)
)

= O1αs(µ
2) +

(

O2 −O1b1 ln
Q2

µ2

)

α2
s(µ

2) + . . . . (1.36)

We see thus that the LO expansion O
(

1, αs(Q
2)
)

= O1αs(µ
2) gives no information on the absolute

normalization, since αs(µ) can take any value by changing the value of µ. Beginning at NLO, the µ

dependence of ln Q2

µ2 starts to compensate the µ dependence of αs and thus we can obtain information
about the absolute normalization and also lessen the scale dependence of O. Moreover NLO can open
up new channels that are inaccessible at LO and can lead to non-trivial distributions for observables
that are trivial at LO. The aim of this section is to explain the technical problems that one faces when
performing a NLO calculation, and their solutions.

1.3.1 NLO corrections and associated divergences

At Next-to-Leading Order, the differential cross section (1.21) becomes

dσNLO
ij→X =

∑

i,j

∫

dx1dx2fi/p(x1, µF )fj/p(x2, µF )dσ̂
NLO
ij→X(x1, x2, µR), (1.37)

where dσ̂NLO
ij→X contains the αs correction to the Leading Order result. One can symbolically write

σ̂NLO =

∫

n
dσ̂B +

∫

n+1
dσ̂R +

∫

n
dσ̂V , (1.38)

with dσ̂B , dσ̂R, dσ̂V representing the LO (Born), real and virtual contributions respectively and the
integration subscripts represent the size of the final state phase space. The corresponding Feynman
diagrams are shown in Fig. 1.5. The general nomenclature is that NkLO contributions correspond
to adding k gluons to the LO contribution. From (1.37) one sees that in a NLO calculation one
should use a NLO calculation for the running coupling and match with NLO PDFs. It is evident from
Fig. 1.5 that the virtual diagrams are physically indistinguishable from the Born ones and thus the
corresponding contribution to the cross section will be given by the interference of the two terms

dσ̂V = dΦn

∑

2Re
(

MV
1M∗

0

)

, (1.39)

where the sum runs over all possible 1-loop contributions and the subscripts 1 and 0 refer to the NLO
and LO matrix elements respectively. The corresponding contributions from the real emissions read

dσ̂R = dΦn+1

∑
∣

∣MR
1

∣

∣

2
. (1.40)
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a b c

FIGURE 1.5: Example of Born (a), Real (b) and Virtual (c) Feynman diagrams.

The NLO contributions involve three types of divergences: ultraviolet divergences from the k → ∞
limit of the loop integrals in the virtual contributions, infrared divergences from the k → 0 limit
of loop diagrams and the emission of soft gluons in the real contributions and collinear divergences
coming from real emission diagrams which involve branchings between three massless partons. These
divergences are not physical but signal the breakdown of perturbation theory. It has been formally
established by the Bloch-Nordsieck and Kinoshita-Lee-Nauenberg theorems [30–32], that sufficiently
inclusive quantities are finite in the massless limit. Ultraviolet divergences are regularized and absorbed
in the running of the coupling constant. Infrared divergences cancel exactly between the real, collinear
and virtual contributions in the final state13. Collinear singularities in the initial state do not cancel
after summing the different contributions and have thus to be absorbed in the PDFs by virtue of the
factorization theorem, as we have seen in the previous section. Since these kind of singularities are
particularly important for the studies performed in this thesis, we provide more details in the following
section.

1.3.2 The Parton Shower approach

We saw in the previous section that collinear singularities arise in massless-parton branchings. In order
to study their origin in perturbation theory, let us start by calculating a concrete example γ∗ → qq̄g
(Fig. 1.6). The real emission matrix element reads

p
1

p
2

p
1

p
2

p
1

p
2

FIGURE 1.6: Born and real emission contributions to γ∗ → qq̄g.

Mqq̄g = ū(p1)ig/ǫt
a i

/p1 + /k
ieγµv(p2)− ū(p1)ieγµ

i

/p2 + /k
ig/ǫtav(p2), (1.41)

where we have assumed mq = mq̄ = 0. In the soft limit k ≪ p1, p2 we can ignore terms suppressed by
powers of k and using the equations of motion, (1.41) becomes

Mqq̄g = ū(p1)ieγµt
av(p2)g

(

p1 · ǫ
p1 · k

− p2 · ǫ
p2 · k

)

. (1.42)

13For technical details see e.g. [25].
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Upon squaring we obtain

|Mqq̄g|2 = |Mqq̄|2 CF g
2 2p1 · p2
(p1 · k)(p2 · k)

= |Mqq̄|2 CF g
2 2E1E2(1− cos θp1p2)

E1Eg(1− cos θp1g)E2Eg(1− cos θp2g)
, (1.43)

with Mqq̄ = −ū(p1)ieγµv(p2). We see that the matrix element diverges in the limit of soft gluon
emission Eg → 0 and for collinear emission θpig → 0. Introducing the energy fractions14 xi ≡ 2Ei/

√
s

the squared invariant amplitude becomes proportional to [(1 − x1)(1 − x2)]
−1, which diverges in the

limits x3 = xg = 0 with x1/x2 fixed (soft singularity) and in the limit x1(2) → 1 with x2(1) fixed
(collinear singularity). The region that is close to the boundary of the phase space is called the
Sudakov region (Fig. 1.7). This region is where logarithms from soft and collinear emission become
large and the cross section becomes divergent.
Let us now generalize a step further and consider a general branching a → bc in the final or initial

FIGURE 1.7: The gluon emission phase-space in terms of the energy fractions xi. The Sudakov
region is shown in red.

state, as shown in Fig. 1.8. Defining t as the virtuality of the propagator in the branching, we can
easily see that15 t ≡ p2b = −2pa ·pc < 0 in initial state branching and t ≡ p2a = 2pb ·pc > 0 in final-state
branching. Hence initial-state branching is usually referred to as spacelike branching and final-state
branching as timelike branching. Defining z ≡ Eb

Ea
and noting that θ = θa+ θb, in the small-angle limit

we have

t =

{

z(1 − z)E2
aθ

2 for timelike branching

EaEbθ
2
c for spacelike branching

(1.44)

Considering the phase space for gluon emission at fixed pb, we have

dΦFSB
n+1 = . . .

d3pb

(2π)32Eb

d3pc

(2π)32Ec

= . . .
d3pa

(2π)32Ea

Ea

Ec

d3pb

(2π)32Eb

= dΦn
1

2(2π)3

∫

EbdEbθbdθbdφdt
dz

1− z
δ(t− EbEcθ

2)δ

(

z − Eb

Ea

)

= dΦn
1

4(2π)3
dtdzdφ, (1.45)

14One can confirm that
∑

i
xi = 2 and 0 < xi < 1.

15All partons are considered massless throughout this section.
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a

b

c

b

c

b

c

b

c

a

FIGURE 1.8: Spacelike (initial state) and timelike (final state) parton branching. The blob repre-
sents theMn contribution.

where FSB stands for final-state branching and we used the relations t = 2EbEc(1 − cos θ) = z(1 −
z)E2

aθ
2 and θ = θb/(1− z) that follow from energy and momentum conservation in the collinear limit.

For initial-state branching the corresponding relation reads

dΦISB
n+1 = dΦn

1

4(2π)3
dt
dz

z
dφ. (1.46)

Remembering that

dσn =
1

F
|M|2dΦn, (1.47)

and integrating over the azimuthal angle, we find (1.23) for both initial and final-state branching

dσn+1 = dσn
dt

t
dz

dφ

2π

αs

2π
P̂ba(z). (1.48)

The variable t is called the ordering or evolution variable and it can be defined in multiple ways, e.g.
for final-state branching

virtuality t ≡ z(1− z)E2θ2

p2T t ≡ z2(1− z)2E2θ2

angle t ≡ E2θ2

Coherence and angular ordering

It has been shown [33] that in order to correctly take into account coherence effects, the correct
evolution variable should be a function of the emission angle16. In order to see how colour coherence
leads to angular ordering, we study gluon emission from a fully coloured object as shown in Fig. 1.9.
The matrix element for this process reeds

M = g2
(

tatb
)

ij

[

Q · ǫ
Q · k −

p̄ · ǫ
p̄ · k

]

+ g2
(

tbta
)

ij

[

p · ǫ
p · k −

Q · ǫ
Q · k

]

, (1.49)

where Q is the virtuality of the intermediate propagator and the sequence of the terms corresponds
to the sequence of the colour flows drawn in Fig. 1.9. The squared invariant amplitude summed over
all colours will be proportional to

∑

a,b,i,j

∣

∣

∣

∣

(

tatb
)

ij

∣

∣

∣

∣

2

=
∑

a,b

Tr
[

tatbtbta
]

=
N2

c − 1

2
CF , (1.50)

16See also [34] and references therein.
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k,a �p,j

p,i

k,a

�p,j

p,i p,i

k,a

�p,j

FIGURE 1.9: Gluon emission from a fully coloured system with its associated colour flows.

while the interference term will be proportional to

∑

a,b,i,j

(

tatb
)

ij

(

tbta
)∗

ij
=
∑

a,b

Tr
[

tatbtatb
]

=
N2

c − 1

2

(

CF −
CA

2

)

(1.51)

and with CF = N2
c−1
2Nc

and CA = Nc, one can see that the interference effects are suppressed by 1/N2
c .

Equivalently one says that to leading order in 1/N2
c the emission of soft gluons can be described as

a sum of incoherent emissions. This is particularly important for the Monte Carlo implementation
of the parton shower algorithms which is formulated as a Markov process. In order to see how the
angular ordering arises formally we recall (eq. 1.43) that the matrix element for gluon emission is
proportional to the function

Wp1p2 =
1− cos θp1p2

(1− cos θp1g) (1− cos θp2g)
. (1.52)

This can be rewritten as

Wp1p2 = W [p1]
p1p2 +W [p2]

p1p2 =
1

2

(

Wp1p2 +
1

1− cos θp1g
− 1

1− cos θp2g

)

+
1

2

(

Wp1p2

1

1− cos θp2g
− 1

1− cos θp1g

)

. (1.53)

Now one can prove [25] that

∫ 2π

0

dφp1g

2π
W [p1]

p1p2 =

{

1
1−cos θp1g

if θp1g < θp1p1

0 otherwise
(1.54)

We thus see that the angle for successive emissions will keep getting smaller and smaller. Radiation
is forced to be inside the two cones that are centered at the parent partons with an aperture twice
the opening angle of the emitting partons. In this way gluon radiation gets self-collimated and jet
structure arises naturally.

The Sudakov form factor

From (1.48) we see that the probability for a single emission integrated over all azimuthal angles is
given by

dP1(t, t+ dt) =
αs(t)

2π

dt

t

∫

P̂ij(z)dz, (1.55)
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where P̂ij is the regularized splitting function. The probability of no-emission then reads

dP0(t, t+ dt) = 1− αs(t)

2π

dt

t

∫

P̂ij(z)dz. (1.56)

We note that unitarity enforces that the probabilities for resolvable and non-resolvable emission add up
to 1. In turn non-resolvable emissions contain soft and collinear emissions as well as virtual corrections,
as shown in Fig. 1.10. We conclude thus that the ‘1’ of eq. (1.56) contains all the virtual contributions
at the collinear limit.
With the above ingredients, we can calculate the probability of no emission taking place between the

FIGURE 1.10: Resolvable (left) and non-resolvable (center and right) emissions.

scales t1 and t2

P0(t1, t2) =
∑

j

lim
N→∞

N
∏

n=1

[

1− dt

tn

αs(tn)

2π

∫

dzP̂ij(z)

]

= exp







−
∑

j

∫ t2

t1

dt

t

αs(t)

2π

∫

dzP̂ij(z)







≡ ∆(t1, t2), (1.57)

where ∆(t1, t2) is called the Sudakov form factor and expresses the probability of evolving from t1 to
t2 without any resolvable branching. This obeys the evolution equation

t
∂

∂t

(

f

∆

)

=
1

∆

∫

dz

z

αs

2π
P̂ (z)f

(x

z
, t
)

, (1.58)

which is nothing other but the DGLAP equation (1.32) with the substitutions f → f/∆ and P (z)→
P̂ (z). Integrating (1.58) and expanding the solution we obtain

f(x, t) = ∆(t)f(x, t0) +

∫ t

t0

dt′

t′
∆(t)

∆(t′)

∫

dz

z

αs

2π
P̂ (z)f

(x

z
, t′
)

= ∆(t)f(x, t0) +

∫ t

t0

dt′

t′
∆(t)

∆(t′)

∫

dz

z

αs

2π
P̂ (z)

×
[

∆(t′)f
(x

z
, t0

)

+

∫ t′

t0

dt′′

t′′
∆(t′)
∆(t′′)

∫

dz

z

αs

2π
P̂ (z)f

( x

zz′
, t′′
)

]

+ . . . (1.59)

which is an exponential expansion containing terms of order
(

αs

2π ln t
t0

)n
. We thus say that the parton

shower resums the leading collinear logarithms in all orders of perturbation theory. We stress out
that the above equations were derived in the limit of small-angle gluon emission. As a consequence,
although the Sudakov region is correctly described by the parton shower, hard emissions will not be
correctly described and one would have to resort to an exact matrix element calculation for these.

1.3.3 Jets and Jet Algorithms

As it has been shown in the previous section, the parton shower evolution induces sequential parton
branchings which are forced to self-collimate with the parent partons. After hadronization, this will
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produce a collimated bunch of hadrons, which is called a jet. The different ways in which one can
define a jet are known as jet algorithms and they have to obey to a minimal set of rules17.
Jet algorithms can be classified into two broad categories: cone algorithms and sequential recombina-
tion algorithms. Cone algorithms use conical structures to cluster particles within a certain angular
distance, such that the sum of the clustered particle momenta coincides with the cone axis. Sequential
recombination algorithms start by identifying the closest particles in some distance measure, recom-
bine them and iterate the procedure until a stopping criterion is reached. Here we will only describe
a certain class of sequential recombination algorithms that are used for the studies reported here.
A very important property that a jet algorithm must satisfy is the Infrared and Collinear (IRC) Safety,
which states that the set of hard events in an event should be insensitive to a collinear splitting or a
soft emission. As we have already seen, collinear and soft gluons lead to divergences in perturbation
theory, whose cancellation depends on the correct summation of the real and virtual contributions of
the corresponding process. The situation might change in the case of IRC unsafe algorithms as illus-
trated in Fig. 1.11: IRC unsafe algorithms can lead to different classes of events for real and virtual
contributions, thus spoiling the cancellation of their divergences. The use of IRC safe algorithms also
leads to a reduced sensitivity to hadronization effects.
The Cambridge/Aachen, kt and anti-kt algorithms are based on the generalized distance measures [36]

FIGURE 1.11: Illustration of IRC unsafety. The addition of a soft gluon changes the number of
hard jets, spoiling the cancellation between real and virtual contributions.

dij = min
(

k2pti , k
2p
tj

) ∆R2
ij

R2

diB = k2pti
∆R2

ij = (yi − yj)
2 + (φi − φj)

2, (1.60)

where kti , yi, φi are the transverse momentum, rapidity and azimuth of particle i, dij and diB are the
distances between the entities i and j and the distance between entity i and the beam respectively.
The parameter p takes the values

p =











1 kt

0 Cambridge/Aachen

−1 anti-kt

(1.61)

The clustering algorithm starts by identifying the smallest of the distances dij , diB and recombining
i and j if dij is the smallest distance or defining i as a jet and removing it from the list of entities
if diB is the smallest distance. This procedure is iterated until no entities are left. It is evident that
soft and collinear emissions will be clustered right at the beginning of the clustering procedure and
thus the anti-kt is an IRC safe algorithm (as is the case for sequential recombination algorithms). It
has been shown [36] that the choice p = −1 favors clustering around hard particles, as opposed to the
kt algorithm which favors soft-particle clustering or the Cambridge/Aachen algorithm which favors
energy-independent clusterings. As a result anti-kt gives circular hard jets (as opposed to irregularly
shaped jets obtained with kt and Cambridge/Aachen - cf. Fig. 1.12) which is an appealing property
for experimental jet reconstruction.

17See [35] and references therein.
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FIGURE 1.12: Parton-level jets with soft “ghosts” reconstructed with different jet algorithms [36].

1.3.4 Matching ME and PS calculations

From the previous discussion it should be clear that there are two different approaches for the calcu-
lation of observables in hadron collisions: the matrix element approach which relies on perturbative
QCD and is thus a fixed order approach and the parton shower approach which includes all-order
contributions in the collinear limit. The two approaches are complementary in the sense that in the
Sudakov region, where the parton shower approach is valid, the matrix-element calculation breaks
down due to the appearance of large logarithms, while in the hard-emission region, where the matrix-
element calculation provides a good description, the approximations involved in the parton shower
approach become invalid. A näıve combination of these two methods would result in a double count-
ing of certain configurations, e.g. a (N + 1)-jet event can be obtained both from a hard, large-angle
emission off a N -jet event and from a soft or collinear emission from a (N + 1)-jet event. There
have been several studies on how to combine these two approaches, which led to the so-called matrix
element with parton shower matching or merging schemes. These are divided into two categories
according to whether the matrix element calculation is performed with LO or NLO accuracy, with the
corresponding approaches collectively referred to as MEPS and NLOPS respectively18.

Tree level: MEPS

There are three schemes for merging matrix-element calculations with parton showers: CKKW [39],
CKKW-L [40] and MLM19. The fundamental concept of these merging schemes is the partitioning of
the phase space into two regions with the use of a transition scale yini defined by a given jet measure
y. If ycut is the resolution variable of a given jet algorithm, then for ycut > yini the observables are
taken from matrix elements modified by Sudakov form factors, while for ycut < yini the observables are
taken from the parton showers subjected to a veto procedure. In more detail, the different merging
schemes follow the same basic procedure

1. definition of a jet measure y and calculation of the cross sections for the processes pp → X +
n−jets with n = 0, 1, . . . , nmax

18We note that there is intensive ongoing work in merging the MEPS and NLOPS approaches, thus allowing a descrip-
tion of events with multiple hard jets at NLO accuracy. This approach has been dubbed MENLOPS [37,38].

19See e.g. [41].
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2. generation of hard partons with a probability proportional to the total cross section and a
kinematic configuration given by the matrix element

3. acceptance or rejection of the configuration with a probability that includes Sudakov and running
coupling effects

4. parton showering with a ‘veto’ that rejects events with extra jets

The differences between the merging schemes lie in

• the definition of the jet measure

• the way the acceptance/rejection of step (2) above is carried out

• the initial conditions for the parton shower algorithms and the application of the ‘veto’

The MLM approach is the simplest of the three since it doesn’t involve an analytic computation of
the Sudakov form factors. The MLM matching proceeds as follows

1. generation of parton level configurations for a given jet multiplicity n with pT > pmin
T , ∆Rij >

∆Rmin
ij , |η| < ηmax and with a weight given by

P (n) =
σX+n

∑nmax
i=0 σX+i

2. a configuration is chosen according to the relative size of the cross section and clustered according
to the kt algorithm, in order to find the scales at which two partons merge into one. A branching
history (consistent with the colour flow) is thus constructed as shown in Fig. 1.13.

3. the coupling constant is reweighted by the factor
αs(d2i )

αs(Q2
0)

at each node i, with Q0 the hard

scattering scale

4. the event is passed to the parton shower, which is run without a veto

5. a jet algorithm is used to cluster the showered event using the clustering parameters Eclus
T , Rclus, ηclus.

Usually the clustering parameters are looser than the generation parameters to insure full cov-
erage of the phase space.

6. starting from the hardest parton, jets with the smallest ∆R are selected and if ∆R < 1.5Rclus

the parton is matched to the jet and removed from the sample. If all jets are matched to partons
the event is matched. Unmatched events are rejected.

7. if no extra jets are present, event is matched. Extra jets are retained only for highest multiplicity
inclusive sample and iff their ET is smaller than the ET of the softest matched jet

8. the cross section is multiplied by the ratio of events accepted by the matching procedure over
the total number of events . This reproduces the Sudakov reweighting of the CKKW scheme.

For the study of a final state containing X + nmax−jets, one generates the X + ni−jets samples with
i < nmax in exclusive mode and the highest multiplicity sample in inclusive mode, combining all
samples according to their relative weights.
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FIGURE 1.13: Example of branching history in the MLM procedure. The nodal values of the kt
measure satisfy dini < d4 < d3 < d2 < d1, where d1 corresponds to the hard scattering scale.

Beyond the tree level: NLOPS

The MEPS approach is based on LO matrix elements and thus it is bound to suffer from large
uncertainties associated to the scale variations as well as being unreliable for the estimation of total
event rates. The question thus arises if one can use NLO instead of LO matrix elements. This problem
had been solved until recently only for the case of the first (hardest) emission by the MC@NLO [42]
and POWHEG [43,44] methods. In both of these methods, the first emission is taken from NLO matrix
element (with the shower approximation subtracted so as to avoid the collinear and soft singularities)
and the following emissions are taken from the parton shower and are thus only reliable in the collinear
limit.
Using (1.38), an observable at NLO accuracy is given by the quantity20

〈O〉 =
∫

Odσ =

∫

dΦnO(Φn) [B(Φn) + Vb(Φn)] +

∫

dΦndΦrO(Φn,Φr)R(Φn,Φr), (1.62)

where dΦr is the 1-particle emission phase-space and B,Vb, R are the Born, virtual and real contri-
butions respectively21 (which incorporate their associated divergences). As we have seen the integrals
over the real and virtual contributions are separately divergent and their divergences cancel out only
after summing the two contributions after the integration. Thus this problem is not suitably formu-
lated for numerical integration. In order to perform Monte Carlo calculations, the divergences have
to be dealt with separately. This is done, e.g. using a subtraction method22

〈O〉 =

∫

dΦnO(Φn)

[

B(Φn) + Vb(Φn) +

∫

dΦrC(Φn,Φr)

]

+

∫

dΦndΦr [O(Φn,Φr)R(Φn,Φr)−O(Φn)C(Φn,Φr)]

≡
∫

dΦnO(Φn) [B(Φn) + V (Φn)]

+

∫

dΦndΦr [O(Φn,Φr)R(Φn,Φr)−O(Φn)C(Φn,Φr)] , (1.63)

where C is a suitably chosen function (called a counterterm) that cancels the singularities of the diver-
gent contributions. In the last equation we have singled out the finite part of the virtual contribution.

20In the rest we omit the hat from σ̂, knowing that the rest of the chapter refers to parton-level results.
21We define B ≡ LB, R ≡ LR, V ≡ LV, where B,R,V are the matrix elements and L is the parton luminosity.
22Another solution is given by the so-called phase-space slicing method, which separates the divergent part of the phase

space from the non-divergent one. This approach is no longer being used by the current MC generators and will thus
not be treated here.
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All the integrals in (1.63) are now finite23. Introducing the quantity

B̄(Φn) = B(Φn) + V (Φn) +

∫

dΦr [R(Φn,Φr)− C(Φn,Φr)] , (1.64)

(1.63) can be written as

〈O〉NLO =

∫

dΦnB̄(Φn)O(Φn) +

∫

dΦndΦrR(Φn,Φr) [O(Φn,Φr)−O(Φn)] , (1.65)

where the subscript NLO denotes that the observable is being calculated by the matrix element with
NLO accuracy. Calculating the same observable from the parton shower, one would have to compute
the probability of having a single emission up to a scale t plus the probability of having no further
emissions down to the cutoff scale t0. Using the Sudakov form factors to express the no-emission
probability, the one-emission cross section is given by24 (cf. eq. 1.38, 1.48)

dσ = B(Φn)dΦn∆t0 +RsdΦndΦr∆t = B(Φn)dΦn∆t0 +B(Φn)
αs

2π

dt

t
P (z)dz

dφ

2π
∆t, (1.66)

where Rs denotes the real contribution in the soft and collinear limit and

∆ti = exp

[

−
∫

ti

dt

t

∫

dz
αs(t)

2π
P (z)

]

= exp

[

−
∫

ti

Rs

B
dΦr

]

. (1.67)

We have thus

〈O〉 =
∫

dΦnB(Φn)

[

O(Φn)∆t0 +

∫

t0

dt

t
dz

dφ

2π
O(Φn,Φr)∆t

αs

2π
P (z)

]

. (1.68)

Expanding to first order in αs, we get the parton shower result

〈O〉PS =

∫

dΦnB(Φn)

{

O(Φn) +

∫

t0

dt

t
dz

dφ

2π
[O(Φn,Φr)−O(Φn)]

αs

2π
P (z)

}

. (1.69)

We observe that (1.69) and (1.65) differ by the substitutions B(Φn) ←→ B̄(Φn) and R(Φn,Φr) ←→
B(Φn)

1
t
αs

2πP (z). Substituting these expressions into (1.68) we get the all-orders emission probability

〈O〉NLOPS =

∫

dΦnB̄(Φn)

{

O(Φn)∆t0 +

∫

dΦrO(Φn,Φr)∆t
R(Φn,Φr)

B(Φn)

}

+

∫

dΦn+1O(Φn+1) [R(Φn+1)−Rs(Φn+1)] , (1.70)

with

∆t = exp

[

−
∫

dΦ′
r

R(Φn,Φ
′
r)

B(Φn)
θ(t′ − t)

]

. (1.71)

The last term in (1.70) is the so-called matrix element correction, which provides the hard, large-angle
contribution to the first emission calculated from the NLO matrix element.
Some comments are in order with respect to the specific implementation of the NLOPS formalism in
the POWHEG and MC@NLO approaches. The first term of (1.70) B̄(Φn)dΦB is what is called a S

event (for Standard MC evolution) and the last term [R(Φn+1)−Rs(Φn+1)]dΦn+1 is called a H event
(for Hard MC evolution). In MC@NLO the difference R(Φn+1)−Rs(Φn+1) can become negative, thus

23This holds only if the underlying Born contribution is finite. For the case of divergent Born contributions, see [45].
24We note that the expressions that follow give a rather schematic proof of concept for the NLOPS formalism. For

rigorous mathematical proofs we refer to the original publications [42–44].
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leading to the appearance of negative events. In POWHEG on the other hand, one has a freedom
to choose a parametrization Rs(Φn+1) = R(Φn+1)F (Φn+1) with 0 ≤ F (Φn+1) ≤ 1 and F (Φn+1) → 1
in the soft and collinear limit. Thus R(Φn+1) − Rs(Φn+1) = R(Φn+1)[1 − F (Φn+1)] ≥ 0. Another
difference with MC@NLO is that the part within the curly braces in (1.70), which corresponds to
the first emission, is generated within POWHEG and is thus independent of the showering generator.
Finally, we note that although the two approaches are equivalent at NLO, differences may arise at
NNLO. In order to see how these differences arise, one can calculate an observable computed with
MC@NLO at the high-pT region25

〈O〉 =

∫

dΦnB̄HW (Φn)

[

O(Φn)∆HW (pmin
T ) +

∫

dΦrO(Φn,Φr)∆HW (pT )
RHW (Φn,Φr)

B(Φn)

]

+

∫

dΦn+1O(Φn+1) [R(Φn+1)−R(Φn+1)]

≈
∫

dΦn+1O(Φn+1)

{

R(Φn+1) +

[

B̄(Φn)

B(Φn)
− 1

]

RHW (Φn+1)

}

(1.72)

where we used the fact that ∆HW (pmin
T ) = 0 and ∆HW (pT ) = 1 for pmin

T → 0 and pT → ∞. The
last term in (1.72) is of order O(αsR) (and thus NNLO with respect to the underlying Born), so the
differences between POWHEG and MC@NLO should be small. However, for certain processes the
NNLO corrections can be quite big and then the difference of the two approaches is manifest in some
observables. A characteristic case is e.g. the dip in the central rapidity region of the hardest jet in
tt̄ events produced with MC@NLO [41]. The dip in MC@NLO grows with increasing pjetT , while the
POWHEG spectrum displays no dip. This behavior is inherited to MC@NLO from HERWIG26. On
the other hand POWHEG produces the first emission itself, filling-in the dead zone of HERWIG.

1.4 Monte Carlo Generators

As we saw in the above discussion a critical point for the calculation of observables in hadron collisions
is the computation of the cross section. For a process 1 2 → N this involves a multidimensional
integration over the final-state phase space. These integrals are almost always impossible to compute
analytically and one has to resort to numerical methods. One of the most popular methods is the
Monte Carlo technique. The Monte Carlo technique is based on the approximation of an integral as
follows

I =

∫ x2

x1

f(x)dx = (x2 − x1) 〈f(x)〉 ≈ (x2 − x1)
1

N

N
∑

i=1

f(xi). (1.73)

For the cross section one would get in a similar way

σ =

∫ 1

0
dx

dσ

dx
≈ 1

N

N
∑

i=1

dσ

dx

∣

∣

∣

∣

i

, (1.74)

where x is an arbitrary parametrization of the phase space chosen so that the boundaries lie at
x = 0, 1. The differential cross section dσ

dx

∣

∣

i
is called the weight of the event parametrized by xi. After

calculating the cross section for a process, one wants to go one step further and simulate physical events
as they occur in nature, i.e. generate a set of 4-momenta distributed according to the dynamical laws
governing the process under study. This step in the HEP language is called event generation. In a
mathematical language the event generation amounts to choosing a value x ∈ [xmin, xmax] distributed

25The subscript HW indicates quantities calculated from the HERWIG parton shower.
26Since HERWIG uses an angular ordered shower, hard radiation which is produced after the first emission is sup-

pressed. This gives rise to a “dead cone” where there is no emission at all from the parton shower.



1.5. Parameter inputs for MC11 production in ATLAS with aMC@NLO 21

according to f(x) or equivalently to selecting uniformly (x, y) in xmin < x < xmax, 0 < y < f(x). In
the case where the primitive F of f is known, the problem can be solved analytically by noting that

∫ x

xmin

f(x′)dx′ = R

∫ xmax

xmin

f(x′)dx′. (1.75)

Then
x = F−1 [F (xmin) +RAtot] , (1.76)

where Atot =
∫ xmax

xmin
f(x)dx. In most of the cases, F is unknown and the problem is tackled using the

hit-and-miss technique. The hit-and-miss algorithms proceeds as follows

1. generate two random numbers R,R′ uniformly27 distributed in (0, 1)

2. calculate x = xmin +R(xmax − xmin) and y = R′fmax

3. if y < f(x) accept the event (hit), else go to (1)

One can write

I =

∫ xmax

xmin
f(x)dx

fmax(xmax − xmin)
Ω =

Nhit

Ntry
Ω, (1.77)

where Ω = fmax(xmax−xmin) and Nhit, Ntry is the number of hits and number of total tries respectively.
Then the integral of a function can be computed with the hit-and-miss technique:

∫ xmax

xmin

f(x)dx = fmax(xmax − xmin)
Nhit

Ntry
. (1.78)

Thus the probability of a hit is proportional to f/fmax. Performing the hit-and-miss technique on
a sample of events generated with a uniform sampling over the phase space (weighted events) gives
a final sample of events which occur with the same probability as in nature (unweighted events).

The probability for an event to be accepted by the hit-and-miss technique is (dσ/dx)i
(dσ/dx)max

while the

unweighting efficiency is given by (dσ/dx)ave
(dσ/dx)max

.
This procedure has been automated by codes that are collectively called Monte Carlo Generators.
These are separated into two categories: cross-section integrators, which calculate cross sections for
specific processes, and event generators, which generate weighted and unweighted events and can
thus be used for simulating physical processes. This simulation is a multistep process (Fig. 1.14)
starting with the matrix element calculation and continuing through the parton shower, hadronization,
clustering, simulation of the underlying event and multiple parton interactions etc.

1.5 Parameter inputs for MC11 production in ATLAS with aMC@NLO

Here we give a brief overview of some of the input values of physical parameters that are critical for
MC production with aMC@NLO and in particular in the studies mentioned in this report.

• The PDFs are given by the CT10 set [87], which includes 52 uncertainty eigenvector sets. The
PDF related uncertainties are given by the formulae [47]

∆σPDF+ =

√

∑

i

(max [σ(set+i)− σ(set0), σ(set−i)− σset0 , 0)])
2 (1.79)

∆σPDF− =

√

∑

i

(max [σ(set0)− σ(set+i), σset0 − σ(set−i), 0)])
2 (1.80)

27Many recent integration algorithms do not use uniform sampling.
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FIGURE 1.14: Typical structure of a hadron collision event with different steps in the event gener-
ation chain.

For completeness we note here that the uncertainties related to the variation of the factorization
and renormalization scales are given by

∆σµ+ = max
{ξF ,ξR}

[σ(ξF , ξR)− σ(1, 1)] (1.81)

∆σµ− = − min
{ξF ,ξR}

[σ(ξF , ξR)− σ(1, 1)] , (1.82)

where ξ = µ/µ0. One usually varies independently ξR and ξF in the region 0.5 ≤ ξ ≤ 2.

• The bottom-quark mass is set equal to the value used for the extraction of the CT10 PDF set
(mb = 4.75 GeV) for consistency. We note that the definition of the b-quark mass (and the
choice of a particular value for it) is a long-standing problem in perturbative QFT. Perturbative
calculations including the production of b quarks should be accompanied with an uncertainty
related to the variation of the b mass. A conservative choice which covers the range of b masses
that seem to reproduce the experimental data is 4.5 < mb[GeV] < 5.

• The top mass value was set to mt = 172.5 GeV [48]

• The masses of the rest of the Standard Model particles and the elements of the CKM matrix are
taken from the 2010 PDG values [49]

• Particular care must be taken in choosing the values for the electroweak gauge-boson masses,
the mixing angle θW and the Fermi constant GF . These are not independent of one another and
choosing arbitrary values can lead to a violation of gauge invariance and consequently unitarity.
For consistency with the rest of the MC11 production samples we choose GF ,mW ,mZ as input
parameters set to their 2010 PDG values and calculate the mixing angle and the electroweak
coupling constant from the tree-level electroweak relations

sin2 θW = 1− m2
W

m2
Z

(1.83)

α(mZ) =

√
2m2

W

(

1− m2
W

m2
Z

)

GF

π
(1.84)



Chapter 2

THE ATLAS EXPERIMENT

2.1 The LHC

The Large Hadron Collider [50] is a synchrotron accelerator designed to accelerate protons up to
a centre-of-mass energy of

√
s = 14 TeV and lead ions (Pb82+) up to a center-of-mass energy of√

sNN = 2.76 TeV per nucleon pair. Some interesting design characteristics of the LHC are presented
in Table 2.1. The LHC is located underground at a depth ranging from 45 to 170 meters. After a

TABLE 2.1: LHC design characteristics

Parameter Value

Circumference 26.7 km

Proton Energy per Beam 7 TeV

Lorentz γ factor 7461

Particles per bunch 1.15 · 1011

Bunches per beam 2808

Peak Luminosity 1034 cm−1s−1

Field of main bends 8.33 T

Revolution frequency 11.245 kHz

Collision rate 40 MHz

Stored Energy per beam 362 MJ

Bunch crossing interval 25 ns

startup period with the LHC working at
√
s = 900 GeV, from the beginning of 2010 the LHC has

been operating at
√
s = 7 TeV, delivering a total integrated luminosity of 5.61 fb−1 at Interaction

Point 1, where the ATLAS detector [51] is located (Fig. 2.1).
Before entering the LHC, the protons are accelerated to 450 GeV and grouped into bunches circulating
with the LHC frequency. This is achieved by the accelerator complex that precedes the LHC as
illustrated in Fig. 2.2. Protons are extracted from Hydrogen gas, by applying an electric field.
The protons are then accelerated by LINAC2 up to 50 MeV. The beam is then injected into the
Proton Booster reaching an energy of 1.4 GeV. In the next step the beam is transferred to the
Proton Synchrotron, where it is accelerated to 26 GeV and circulated with the same frequency and
bunch spacing as the LHC. The final step before entering the LHC is the Super Proton Synchrotron,
which accelerates the beams to 450 GeV. Once the beams are inside the LHC accelerator, it takes

23
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FIGURE 2.1: Total integrated luminosity delivered at Interaction Point 1 and recorded by the
ATLAS detector in the 2011 proton runs [52].

approximately 20 minutes for them to be accelerated to the peak energy. The average beam lifetime
is around a day, after which, it is dumped into a block of a 8-meter long cylinder of graphite.

2.2 The ATLAS detector

At design luminosity 23 interactions per beam-crossing are expected with an event rate of 40 MHz
(the minimum between bunch train crossings being 25 ns). The guiding principle in the construction
of the ATLAS experiment was the maximization of the discovery potential for new physics, notably
the search for the Higgs boson. The study of such kind of events requires (a) a hermetic coverage in
pseudorapidity and azimuthal angle for the accurate determination of /ET and jet energy directions,
(b) electromagnetic and hadronic calorimeters with adequate energy resolution for measurements of
EM and hadronic objects and (c) muon spectrometers with a capacity for high-precision muon mea-
surements.
The overall detector layout is shown in Fig. 2.3. ATLAS is a general purpose detector and is composed
of 4 major parts: (i) the inner detector, (ii) the calorimeter system, (iii) the muon spectrometers and
(iv) the magnets. The Inner Detector (depicted in Fig. 2.4) measuring 6.2 m in length and 2.1 m
in diameter is comprised of 3 subdetectors: (a) the pixel detector, (b) the Semiconductor Tracker
(SCT) and (c) the Transition Radiation Tracker (TRT). It is immersed in a solenoidal magnetic field
with intensity B = 2 T and has a pseudorapidity coverage of |η| < 2.5. With the use of very high-
granularity detectors close to the interaction point, the Inner Detector is used for the determination of
impact parameters, particle momentum and vertexing. The Pixel Detector is designed for identifying
short-lived particles, such as B hadrons. The TRT provides tracking to enhance pattern recognition
and using the transition radiation characteristics of electrons, provide the electron identification.
The calorimeter system (shown in Fig. 2.5) is comprised of 3 parts: (a) the electromagnetic calorime-
ter, (b) the hadronic calorimeter and (c) the Forward calorimeters. The electromagnetic and hadronic
calorimeters are divided into two regions: (i) barrel, covering the pseudorapidity range and |η| ≤ 1.475
(ECal) and |η| ≤ 1.7 (HCal) and (ii) end-cap, covering the pseudorapidity range 1.375 ≤ |η| ≤ 3.2
(ECal) and 1.5 ≤ |η| ≤ 3.2 (HCal). The forward calorimeter covers the region 3.1 < |η| < 4.9. The
electromagnetic (barrel and end-cap), forward and hadronic end-cap Calorimeters use Liquid Argon
for the active medium and lead (ECal), copper (HCal and FCal) or tungsten (FCal) for the absorbers.
The hadronic barrel Calorimeter uses plastic scintillating tiles embedded in an iron absorber. The
calorimeter system measures the energy of electromagnetic and hadronic objects, providing an en-



2.3. Trigger 25

FIGURE 2.2: The CERN accelerator complex.

ergy resolution parametrized byσ(E)
E = a√

E[GeV]
⊕ b, where a is a stochastic term and b is a constant

term reflecting local non-uniformities in the response of the calorimeter. In the barrel region, one has
a = (10.1 ± 0.4)%

√
GeV and b = (0.2 ± 0.1)% for electromagnetic objects in the ECal. The energy

resolution for hadronic objects in the HCal is around 80%
√
GeV, with a constant term of zero within

the associated uncertainties.
The calorimeter system is surrounded by the muon spectrometer. The muon spectrometer consists

of muon chambers utilizing different detector technologies to measure muons and a toroidal magnet
system producing a magnetic field of approximately 0.5 T and 1 T in the barrel and end-cap regions
respectively. The muon spectrometer is designed to trigger on muons within the range |η| < 2.4 with
dedicated subdetectors and measure the muons’ momenta in the range |η| < 2.7.

2.3 Trigger

With the expected interaction rate reaching approximately 1 GHz at design luminosity and the current
hardware and storage limitations only allowing a storage rate of approximately 100 Hz, the task of
the Trigger/DAQ system of the ATLAS detector is required to achieve rejection factors of the order of
107, while maintaining an excellent efficiency in recording rare processes. The trigger consists of three
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FIGURE 2.3: Layout of the ATLAS detector.

levels of event selection: the Level-1 (L1), Level-2 (L2) and the Event Filter (EF). The L1 trigger is
exclusively hardware based while the High-Level Trigger (L2 and EF) are software based.
The L1 trigger uses all the calorimeter subsystems and the Resistive Plate Chambers (RPC) and
Thin-Gap Chambers (TGC) of the muon system to search for high-pT muons, electrons, photons,
jets and hadronically decaying τ leptons. The L1 trigger reduces the accepted events rate to 75 kHz.
The time taken from the bunch crossing until the L1 trigger decision is made is required to be less
than 2.5 µs. The L2 trigger is seeded by Regions-of-Interest (ROI), based on coordinates, energy, and
type of signatures identified by the L1 trigger. The accept rate is reduced by L2 to below 3.5 kHz
with an average processing time of 40 ms per event. The EF then further reduces the accept rate to
approximately 200 Hz with an average processing time of 4 s per event.

2.4 Coordinate system

The coordinate system used by the ATLAS experiment is defined with respect to the LHC beam and
the plane of the accelerator. The beam direction defines the z-axis and the x − y plane is the plane
transverse to the beam direction. The positive x-axis points from the interaction point towards the
center of the LHC ring and the positive y-axis points upwards. The azimuthal angle φ is measured
around the beam axis and the polar angle θ is measured from the beam axis1.

1One most frequently uses the pseudorapidity variable, defined as η = − ln(tan θ/2). Transverse variables are defined
in terms of their x and y components, e.g. for the transverse momentum we have pT =

√

p2x + p2y. One can also define

a distance measure in (η, φ) space as ∆R =
√

(∆η)2 + (∆φ)2.
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FIGURE 2.4: Layout of the Inner Detector.

FIGURE 2.5: Layout of the Calorimeter system.

FIGURE 2.6: Schematic layout of the ATLAS Trigger-DAQ system.
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Chapter 3

STUDY OF THE INFRARED AND COLLINEAR

REGION IN tt̄jj EVENTS

“The status of QCD is that of a successful symbiosis of astrophysics (ideas), astronomy
(observation) and astrology (inspiration).

Successful - because it represents a rare example of a field in which we are capable of
predicting so much while understanding so little.”

Yu. Dokshitzer.

3.1 Motivation

Probing the origin of the electroweak symmetry breaking or discovering new physics at the LHC
requires as a first step the extraction of the corresponding signals from a huge background of mostly
uninteresting QCD events (cf. Fig. 3.1). With top-quark pairs being produced at the order of 1 per
second at design luminosity, the LHC will be a top-quark factory. This makes events with top quarks
important as a signal process as well as a source of background for other processes.
More precisely, the study of top-pair production in association with additional jets serves as a test for

FIGURE 3.1: Predicted contributions to the Standard Model cross section for pp, pp̄ collisions [53].

29
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perturbative QCD, with NLO calculations becoming available only recently [54–58]. The measurement
of the additional jet production-rates will aid in reducing the modeling uncertainties of Initial and
Final State Radiation in tt̄ events and also provide a more precise understanding of tt̄ events topology,
where the presence of the additional jets has been shown to increase significantly the failure rates of
the kinematic reconstruction algorithms. Moreover, since the top-quark mass is orders of magnitude
higher than the rest of the quarks, it provides a handle for assessing theory predictions at scales where
new physics is expected to be found. Top-pair events with additional jets can also provide access to
the top-charge asymmetry [59], which is a O(a3s) effect, having thus the potential to shed light on the
discrepancy recently reported by the CDF collaboration [60].
On the other hand, tt̄+ jets events constitute an important (and sometimes the dominant) background

t

t t

t t

t

b

b

b

b

H

FIGURE 3.2: Reducible (left) and irreducible (center) background to the pp → tt̄H(bb̄) process
(right).

in the Higgs and SUSY searches. The case with 2 additional jets, is particularly important for the
Higgs searches in the low-mass region, where the Higgs is produced in association to a tt̄ pair and
decaying to bb̄. For this channel, the tt̄bb̄ process constitutes the irreducible background and tt̄jj (with
j denoting a light-flavoured jet) constitutes the reducible background, as shown in Fig. 3.2. The latter
has to be taken into account due to the finite purity of flavour tagging. It has been shown [61] that
although a Higgs signal could be established with 3σ significance in the tt̄H channel with around
L = 60 fb−1 of integrated luminosity, the signal reconstruction is undermined by the presence of the
additional jets which hinders the kinematic reconstruction of the event. A channel whose dominant
background comes from tt̄jj production is pp → H(W+W−)jj, which is of particular interest for
Higgs searches in the mass region 140 . mH [GeV] . 190. We see thus that a precise determination
of the QCD production of jets in association with tt̄ pairs is important for Higgs searches.
The production of tt̄+ jets events can also figure among the most important background processes

FIGURE 3.3: Top-pair production (left) and gluino production (right).

for a series of channels used for SUSY searches, whose typical signatures involve multijet final states
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with a large missing transverse energy. Top-pair events contain b quarks and W bosons, which can
also decay hadronically, mimicking the typical SUSY signals. In the case where additional jets are
considered, one has a considerable freedom to choose the decay modes of the W bosons and as a
consequence, tt̄+ jets events can plague several SUSY channels. The situation is deteriorated in the
case where the 3rd generation squarks are lighter than the other squark generations [62].

3.2 Matrix element calculation

The existing tt̄+ jets calculations [54–58] are performed only at the Matrix Element level, with imple-
mentations into showering and hadronization generators barely starting to become available [63]. As a
consequence, one cannot use them directly to make predictions for hadron observables before passing
them through the subsequent steps of showering, hardronization and decays that we described in the
previous chapter. For the tt̄jj calculations [56–58], the first step towards this direction would be to
implement these calculations in one of the NLO parton matching schemes: MC@NLO or POWHEG.
This going beyond the scope of this work, we will limit ourselves to the study of the soft and collinear
region in tt̄jj events1 and try to see where the parton shower is expected to alter significantly the
matrix element spectrum.
The most recent tt̄jj calculations [58] use the setup shown in the Table 3.1. We note that that tt̄jj

TABLE 3.1: Setup for ME tt̄jj calculation as in [58]

Parameter Value
√
s 7 TeV

PDF MSTW2008NLO [64]

mt 173.3 GeV

mq, q 6= t 0

Scales µR = µF = mt

Jet Veto pjetT > 50 GeV

Rapidity cut |yj| < 2.5

Jet separation ∆Rjj > 0.5

is the first process among the class of tt̄+ jets events, where the Born contributions begin to diverge.
This is easily seen if we consider for example eq. (1.41). For the emission of a gluon from a massive
quark, the matrix element would now be proportional to

1

(p1 + k)2 −m2
=

1

2p1 · k
=

1

2EgEq(1− β cos θp1g)
, (3.1)

where β = |~p1|/Eq and thus the collinear divergence for θp1g → 0 becomes a collinear enhancement.
One can easily see that in tt̄j events, all possible branchings contain massive quarks, so the matrix
element will contain propagators of the form (3.1). However in tt̄jj events there are branchings between
3 massless partons, as shown in Fig. 3.2 and one recovers the infrared and collinear singularities
discussed in the introductory chapter. If we recall the probability for generating an unweighted event
in a region of the phase space parametrized by xi: P = (dσ/dx)i

(dσ/dx)max
, we immediately see that a divergence

in x→ 0 would lead to a non-physical spectrum with all events being clustered in the first bins in x.
In order to overcome this problem, a jet veto is set to pjetT = 50 GeV for the softest jet in the event.

1We note that, in the following, j refers to a light-flavoured jet.
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The goal of the next section is to estimate how much the jet veto can be lowered with the perturbative
ME calculation remaining valid, or, in other words, estimate where the soft and collinear logarithms
start to dominate the cross section.

3.3 Study of infrared and collinear divergences

In order to estimate the region where the soft and collinear logarithms dominate the tt̄jj cross sec-
tion, we have to compare a fixed-order calculation with a calculation at the same perturbative order
interfaced to a parton shower. For the fixed-order calculation we use the Alpgen generator [65] which
provides a LO calculation of tt̄ + n jets, with n ≤ 6. For the parton shower we interface the Alpgen
samples with the HERWIG generator [66] and the Jimmy plug-in [67] for the simulation of Multiple
Parton Interactions. The parameters used in each step of the event generation can be found in Ap-
pendix A.
Alpgen uses the MLM matching scheme with the matching parameters set to Eclus

T , Rclus, ηclus as
shown in the Table A.1. In order to perform a study of a process containing up to n additional jets,
one has to produce the complete set of multiplicities X + i jets, with 0 ≤ i ≤ n, with the last sample
generated in inclusive mode and the rest of the samples generated in exclusive mode. We note here
that when one uses the MLM matching option, the code performs the αs reweighting according to
the MLM algorithm that was presented in Section 1.3.4, thus effectively pushing the Matrix-Element
sample away from the soft and collinear region. As a consequence, in order to obtain a pure Matrix-
Element sample, one has to disable the MLM matching.
For this study, showered samples containing up to 2 jets coming from the matrix element were produced
in exclusive mode, whereas the highest multiplicity sample with 3 additional jets was produced in in-
clusive mode. Due to the extremely low unweighting efficiency of samples containing high-multiplicity
final states in Alpgen, the Matrix-Element sample produced locally (ME) contained only weighted
events and was produced with three additional jets in exclusive mode, with the MLM matching dis-
abled. Jets were reconstructed with the anti-kT algorithm with a radius parameter R = 0.4 and they
were subject to a minimal set of selection criteria, i.e. pjetT > 15 GeV, |ηjet| < 6,∆Rjj > 0.7† which
coincide with the generation cuts. Jets were further characterized as coming from a top decay or as
additional jets. Jets coming from a top decay were required to contain a decay product of the top
quark within a radius ∆R = 0.4 from the jet axis.
In order to see how the parton shower works, one can, as a first step, choose an observable which is
well-defined in all of the phase space, such as the pT spectrum of the top quark, shown in Fig. 3.4.
All of the distributions presented here are normalized to N =

∫ 500
0

dN
dpT

dpT and the error bars on the
respective plots account only for the statistical errors. It is obvious from Fig. 3.4, that adding the
parton shower makes the pT spectrum softer due to gluon emissions that carry away a part of the pT
of the parent quarks. The spectra of the leading and subleading additional jets (Fig. 3.5) follow the
same pattern, with the ME spectrum being finite at low pT as expected.
Fig. 3.6 shows the pT distribution of the 3rd leading additional parton in the event (or its associated
jet in the case of the showered samples). In the low-pT region it is clear that the ME calculation
diverges due to the large logarithms from soft and collinear gluon emission. The Parton Shower on
the other hand systematically resums such kind of contributions, thus rendering the observable finite
at low pT . As shown in Fig. 3.6(b), the parton shower pT spectrum displays a turning point at
pT ≈ 23 GeV, which produces the characteristic “Sudakov peak”. This signals the breakdown of the
fixed order perturbative result (ME). One can thus say that at values pT . 25 GeV the ME result is
not valid. In the high-pT region (pT & 80 GeV) the two spectra have the same slope, which indicates
that the ME contribution dominates the high-pT region, as expected.
One could also establish a rule of thumb for estimating where the logarithms from soft and collinear

†Here j denotes both jets containing top-decay products and additional jets.
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gluon emission become important by recalling that the leading logarithms are of the form αs ln
2 Q2

µ2 ,
where Q is the hard scale of the process. Solving for µ one has

µ = Q exp

[

− 1

2
√
αs

]

. (3.2)

Logarithms from soft and collinear gluon emission will spoil the convergence of the fixed order ex-
pansion for µ = O(1). It is obvious from (3.2), that the ‘soft scale’ µ is proportional to the hard
scale Q and thus the region where soft and collinear logarithms dominate the cross section is process
dependent. For example, for top-quark production, with the hard scale set by the top mass, this
argument leads to a soft scale of pT . 35 GeV, while for the production of SUSY particles, this region
could extend to hundreds of GeV.
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FIGURE 3.4: pT spectrum of the top quark (or associated jet) given by the ME (without matching)
and ME+PS (Np3 inclusive sample) calculations. Only statistical uncertainties are shown.
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3.4 Conclusions

This chapter addressed the question of where large logarithms spoil the convergence of fixed order
perturbative calculations for tt̄+ jets processes. By reconstructing the pT spectrum of the 3rd hardest
jet in the event, it was proven that the region pT . 25 GeV is dominated by soft and collinear emis-
sions and can thus only be described correctly by resumming the associated large logarithms through
the parton shower approach.
The problem of merging the parton shower calculation with the fixed order result at LO can be ad-
dressed by the MLM matching scheme. There one needs to define two set of parameters for the
matching: the generation cuts pmin

T ,∆Rmin, ηmax and the matching parameters Eclus
T , Rclus, ηclus. Ad-

ditional partons are produced by the matrix element in the region ppartonT > pmin
T ≤ Eclus

T ,∆Rparton >
∆Rmin ≤ Rclus, |ηparton| < ηmax ≥ ηclus and from the parton shower in the complementary region.
The generation cuts should be tighter than the matching cuts, so as to ensure a complete coverage of
the phase space. A usual choice is to set Eclus

T = max
(

pmin
T + 5, 1.2pmin

T

)

. Choosing a lower energy
scale would force the ME generator to fill-in a larger part of the phase space. Eventually generated
events which would lie in the Sudakov region would have to be rejected by the matching procedure,
enhancing the merging effects. If the matching is done in a consistent way, the observables should be
independent of the parton-level generation cuts and in particular should converge for pmin

T ,∆Rmin → 0.
Some dependence on the matching and generation cuts may however still be present in the distribu-
tions after the parton-jet matching. This should eventually be accounted for in the systematics.
It has to be emphasized, that although these studies might give an indication as to how the pro-
cess phase-space is generally structured, when one wants to implement a merging scheme for a NLO
calculation, a similar study should be performed in the framework of the NLO matching scheme for
consistency [68]. For processes involving divergent Born contributions, the typical procedure is to ap-
ply a generation cut pmin

T at the matrix-element level and an analysis cut panT > pmin
T after the parton

shower. The generation cut should then be lowered with the analysis cut remaining fixed, until the
sample obtained after the analysis cut remains unchanged under the change p

′ min
T < pmin

T .



Chapter 4

CALCULATION OF Wbb̄ WITH aMC@NLO

4.1 Motivation

The production of electroweak bosons in association with jets, in particular jets originating from b
quarks, are among the most prominent backgrounds for a series of interesting signal processes under
study at the Tevatron and the LHC (Fig. 4.1). More precisely, Wbb̄ is a background to single top
or top-pair production, whose mechanism involves the decay of the top to a W boson and a b quark,
the “Higgsstrahlung” process [69] which involves a W boson produced in association with a Higgs
decaying to a bb̄ pair and also to certain searches for physics beyond the Standard Model. The MSSM
or 2-Higgs Doublet Models [70] feature signals, whose final states (H/Abb̄ → τ+τ−bb̄) can have a
contamination from Zbb̄ → l+l−bb̄. Moreover, the recent measurements of W + b-jet production
from the CDF collaboration [71] and from the ATLAS collaboration [2], indicate an excess over the
theoretical prediction by a factor of 2.5 − 3.5 (CDF) and 1.5σ (ATLAS). A precision calculation of
Wbb̄ production is thus interesting per se.
In this chapter we will use the new aMC@NLO software [72] to study the Wbb̄ process, calculating its
cross section and presenting several differential distributions with full NLO accuracy. In the beginning
of the chapter we will briefly describe the software and the details involved in the theoretical calculation
of the Wbb̄ process. Then we will present a series of consistency checks performed on a Z/γ∗bb̄ sample.
Finally we will present the result of our calculation.

FIGURE 4.1: Example of processes containing a Wbb̄ final state: WH production (left), single top
(middle), QCD Wbb̄ (right).

4.2 The aMC@NLO framework and details on the calculation

The aMC@NLO1 is a matrix element generator, which can a priori be used for the generation of
unweighted events described by a given theory and interfaced with the currently available showering

1‘a’ stands for automatic.

35
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and hadronization generators. We stress the ‘a priori’, since its current implementation is bound by
certain restrictions2, inherited from the software on which aMC@NLO is built.
Recalling eq. (1.63), it is clear that for a numerical NLO calculation one needs the Born and real
contributions together with the finite part of the virtual contributions and the counterterms. In
aMC@NLO the Born and real contributions and the counterterms are calculated by MadFKS [76].
MadFKS uses MadGraph for the calculation of the Born matrix elements and the FKS subtraction
formalism [77] to calculate the real contributions and the counterterms. The FKS formalism proposes
a way to partition the phase space, in which, in each partition there is at most one infrared and at
most one collinear divergence. For partons i, j that can generate infrared or collinear divergences
one introduces a set of partition functions Sij that must satisfy

∑

i,j Sij = 1 and uses the “plus-
prescription” (1.25) to regulate the real-emission divergences:

dσ̃R =
∑

i,j

(

1

ξi

)

+

(

1

1− yij

)

+

ξi(1− yij)Sij |Mn+1|2dΦn+1, (4.1)

with ξi = Ei/
√
ŝ, yij = cos θi,j and the infrared and collinear divergences appearing for ξ → 0

and yi,j → 1 respectively. The part of the framework that calculates the one-loop corrections is
dubbed MadLoop. It uses the OPP reduction method [78] for the evaluation of tensor integrals as
implemented in CutTools [79]. MadLoop’s working concept is based on the principle that any loop
diagram can be obtained by cutting one and only one of the propagators in the loop. MadLoop thus
uses MadGraph which can generate the so-called L-cut diagrams, containing two additional final-state
partons3. The loop diagrams are then reconstructed by appropriately sawing the L-cut diagrams as
shown in Fig. 4.2. Lastly, in order to get predictions for physical observables, one needs to add the
parton shower to the parton level results. In the aMC@NLO framework, the MC@NLO method is
used for the matching. We also note that the code contains a reweighting module that can be used
to compute the cross-section uncertainties coming from the variation of the scales and the PDF set
without having to regenerate the events. For this, an extended Les Houches Event record [80] is
written, containing all the weight information. The idea is then to reweight the unweighted events
with a factor σ(µ,PDF)/σ0, where σ0 corresponds to the cross section obtained by the central value of
the scales and PDF and σ(µ,PDF) represents the cross section obtained with a different set of scales
and/or PDF. The associated uncertainties are then calculated using the formulae in Section 1.5.
The Wbb̄ and Z/γ∗bb̄ processes have already been studied by the aMC@NLO authors in [1]. For the
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FIGURE 4.2: Working concept of MadLoop: generation of loop diagram (right) from L-cut diagram
(left) obtained with MadGraph.

former case, the aMC@NLO calculation included massive b quarks and off-shell W as was previously

2The current version of the code, based on MadGraph4 [73], has the following constraints [74]: (i) the process must
have a contribution at the Born level, (ii) the process must not contain any 4-gluon vertices, (iii) all Born contributions
must contain the same powers of αs and αEW , (iv) at least one quark must be present in the external states of the
input process, (v) the process must not contain correction involving EW gauge bosons circulating in the loops and (vi)
finite-width effects of unstable massive particles appearing in the loops cannot be treated, (vii) only Standard Model
processes are allowed. These restrictions will be overcome once the interface to MadGraph5 [75] becomes available.

3These can also be Fadeev-Popov ghosts.
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presented in [81]. The Z/γ∗bb̄ calculation with aMC@NLO was the first to include massive b quarks
together with off-shell effects and full spin correlations. The main difference of the calculation in
Section 4.4 from the one in [1] lies in the use of an off-diagonal CKM matrix and the inclusion of
massive τ leptons.

4.3 Consistency checks on the Z/γ∗bb̄ sample

Before using the code for the generation of new processes, a consistency check was performed on the
parton shower and hadronization steps of the calculation using an existing Z/γ∗bb̄ sample generated
with aMC@NLO, with the aim of reproducing the results found in [1]. The sample used for showering
was produced by the authors of aMC@NLO4 with the settings used in [1]. The parton-level sample
contained a cut on the dilepton invariant mass ml−l+ > 30 GeV. The same cut was applied at the
particle level. HERWIG was used for showering and hadronization. The necessary input parameters
are given in Table A.3 of Appendix A. We note that the B hadrons have been set stable, in order to
avoid reconstructing leptons coming from B-hadron decays. Jets were reconstructed with the anti-kT
algorithm with radius parameter R = 0.5 and each jet was required to have pT > 20 GeVand|η| < 2.5.
A b jet was defined as a jet that contained at least one B hadron within ∆R ≤ 0.5 of the jet axis and
a bb jet was defined as a jet containing at least two B hadrons within ∆R ≤ 0.5 of the jet axis.
A series of distributions obtained with the analysis described above is shown in Figs 4.3-4.13. The
histogram entries were weighted by the factor σ/N , where σ = 15.94 pb is the total cross-section
obtained with the settings of [1] and N is the number of entries of each histogram. Fig. 4.3 shows
the b-jet multiplicity as a fraction of the total number of events. The bb-jet/b-jet fraction is given by

N1,bb

N1,bb+N1,b
, where N1,bb is the number of events containing exactly one bb jet and N1,b is the number

of events containing exactly one b jet. Events containing more than 2 b jets or more than 1 bb jet are
below the per mille level. Fig. 4.4 shows the invariant mass distribution of the e−e+ pair produced
by the decay of the vector boson in the hard scattering. The distribution peaks at the Z pole mass as
expected and the low ml−l+ tail is due to the γ∗ contribution. Figs. 4.5 and 4.6 show respectively the
transverse momentum and pseudorapidity spectrum of the electrons and positrons produced in the
hard scattering. Figs. 4.7 and 4.8 show respectively the transverse momentum and rapidity spectrum
of the dilepton pairs from the hard scattering. Figs. 4.8 and 4.9 show respectively the transverse
momentum spectrum of the leading and subleading b jet produced in the hard subprocess, while Figs.
4.11 and 4.12 show the pseudorapidity spectrum of the leading and subleading b jets. The distributions
are in agreement with the results presented in [1].

4.4 Results from the Wbb̄ calculation with the ATLAS MC11 de-

faults

The main goal of this thesis was the generation and study of a Wbb̄ sample with aMC@NLO using
the ATLAS MC11 defaults quoted in Table A.4 of Appendix A. The generation of the full Wbb̄
sample requires to generate separately the contributions of each individual channel W+bb̄, W−bb̄ in
each possible W decay modes, i.e. e, µ and τ , and to calculate the real emission corrections in each
channel separately. After this step the individual channels have to be stitched together and the virtual
corrections have to be calculated. The sample receives contributions from 288 channels, 48 of which
require virtual corrections.
For the generation of the sample no cuts were used, since the underlying Born process doesn’t contain

4All samples are publicly available at http://amcatnlo.web.cern.ch/.
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FIGURE 4.3: Fraction of total events containing exactly 0, 1 and 2 b jets. Left panel: result from
the calculation described in the text for the Z/γ∗bb̄ sample. Right panel: result from [1].

any divergent contributions. The renormalization and factorization scales were set equal to

µR = µF =

√

m2
lν + p2T (lν) +

m2
b + p2T (b)

2
+

m2
b + p2T (b̄)

2
. (4.2)

The obtained cross section at LO was

σWbb̄
LO = (46.098 ± 0.007) pb (4.3)

and at NLO:

σWbb̄
NLO = (112.144 ± 0.064) pb, (4.4)

giving a K-factor of 2.43. The quoted uncertainty is due to the Monte Carlo integration only. The
size of the unweighted-events sample was 105 events. For showering and hadronization the HERWIG
generator was used and Jimmy was added for simulating multiparton interactions. It has to be stressed
out that in approximately 13% of events the Monte Carlo truth-record was broken. This happened
only in events containing τ leptons. These events were discarded from the analysis. As a result we
expect that the differential distributions presented here will not reproduce the cross section quoted in
Eq. (4.4).
The showering was performed with the ATLAS software. Jets were reconstructed with the anti-kT
algorithm with radius parameter R = 0.4 and each jet was required to have pT > 25 GeVand|y| < 2.1.
A b jet (bb jet) was defined as a jet that contained at least one (two) B hadron within ∆R ≤ 0.4 of
the jet axis. A series of observables, similar to those presented in the Z/γ∗bb̄ analysis, are shown in
Figs. 4.15-4.20. Unless otherwise specified, the histogram entries were weighted by the factor σ/N ,
where σ = 112.144 pb is the total cross-section and N is the number of entries of each histogram.
Figure 4.15(a) shows the shows the b-jet multiplicity as a fraction of the total number of events.

The bb-jet/b-jet fraction is defined in the same way as for the Z/γ∗bb̄ sample, i.e.
N1,bb

N1,bb+N1,b
. Events

containing more than two b jets are below the per mille level and events containing more than one
bb jet were approximately 1.5%. One notices that the fraction of bb quarks in the Wbb̄ sample is
higher than the one in the Z/γ∗bb̄ sample. As Fig. 4.15(b) suggests, this happens because the ∆R
separation between the B hadrons is smaller for Wbb̄ production. This can be explained if we consider
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FIGURE 4.4: Invariant mass distribution of final-state dilepton pair. Left panel: result from the
calculation described in the text for the Z/γ∗bb̄ sample. Right panel: result from [1].

the production mechanisms for the 2 processes, shown in Fig. 4.14. For the case of Wbb̄, the heavy-
quark pairs are produced by gluon splittings and are thus expected to be close in pseudorapidity.
This produces the plateau at low ∆R in Fig. 4.15(b). Since the B hadrons will tend to be closer to
each other, they will be more often reconstructed as one jet, which in turn leads to an increase of the
bb/b-jet fraction. For the case of Z/γ∗bb̄ production, the dominant production channel is gluon-gluon
fusion, where the final-state heavy-quark pairs will tend to have a larger separation in pseudorapidity.
Figures 4.16(a) and 4.16(b) show the invariant mass of the dilepton pairs produced by the decay of the
W boson in the hard-scattering process and the transverse energy of the associated neutrinos. Figure
4.17(a) shows the transverse momentum distribution of the positively and negatively charged leptons
produced in W+bb̄ and W−bb̄ events respectively. Unlike the Z/γ∗bb̄ case, there is an asymmetry in
the two distributions, with the positively charged leptons being produced with a higher cross section.
This is expected from the surplus of positive charge in the initial state.
Figure 4.18(a) shows the transverse momentum spectrum of the dilepton pairs produced by the decay
of theW boson in the hard scattering process. Figure 4.17(b) shows the pseudorapidity spectrum of the
positevely and negatively charged leptons. Comparing this with the same plot for the Z/γ∗bb̄ sample
(Fig. 4.6), one observes two differences. Unlike Z/γ∗bb̄, in Wbb̄ production there is an asymmetry in
the pseudorapidity spectra of the positively and negatively charged leptons, with the positively charged
ones being produced more centrally. This is explained by the difference of the parton luminosities
that are involved in the production mechanisms. This also explains the appearance of a plateau in
the rapidity distribution of the dilepton pairs coming from the decay of the W boson, shown in Fig.
4.18(b). Unlike the Z/γ∗ production, which is dominated by gluon fusion, W production involves
quarks, which tend to carry a larger fraction of the parent hadron’s momentum, thus resulting in the
production of W bosons at higher rapidities. Figures 4.19 and 4.20 show the transverse momentum
and pseudorapidity distribution of the two hardest b jets in the event.
It was found that during the generation of this sample, the same random number seed was used for
several of the contributing channels. This would lead to an unphysical clustering of the generated
events in certain regions of the phase space. This effect is expected to be more pronounced in regions
of low statistics. The unphysical features seen in the high-pT tail of the lepton, dilepton and subleading
b-jet distribution (Figs. 4.17(a), 4.18(a), 4.19(b)) are possibly due to this effect and require further
investigation.
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FIGURE 4.5: Transverse momentum of electrons (blue) and positrons (red). Left panel: result from
the calculation described in the text for the Z/γ∗bb̄ sample. Right panel: result from [1]. The inset
shows the ratio e+/e−.

4.5 Comparison with ATLAS data

In order to compare the aMC@NLO predictions for Wbb̄ with data, one has to reduce the aMC@NLO
sample, which was produced with no cuts, to the fiducial phase space defined in the recent ATLAS
measurement [2] and apply the same selection for the objects. This is achieved by applying the
following set of cuts. Leptons are selected if they are matched to a W boson5 and if they satisfy
plT > 20 GeV and |ηl| < 2.5. Neutrinos are selected if they satisfy pνT > 25 GeV. Jets are reconstructed

with the anti-kT algorithm with a radius parameter R = 0.4. The jet selection requires pjT > 25 GeV,
|yj | < 2.1. A jet that passes the selection criteria is tagged as a b jet if at least one B hadron is
found within a distance ∆RBj < 0.3 of the jet axis. An event is rejected if no charged leptons or
no neutrinos which pass the selection criteria is found. Events containing τ leptons that pass the
selection criteria are also rejected. Events are only kept if they further satisfy the following criteria:

mW
T ≡

√

2plT p
ν
T [1− cos(φl − φν)] > 40 GeV, where plT , pνT , φl, φν are the transverse momenta and

azimuth of the charged lepton and neutrino that are matched to a W boson. Events are rejected if
n > 2 or nb < 1 or nb > 2, where n, nb are the multiplicities of all jets and b jets that pass the
selection criteria. An event is also rejected if a selected lepton is found within a distance ∆Rlj ≤ 0.5
of a selected jet.
Figure 4.21 shows the prediction of aMC@NLO for Wbb̄ production, together with the data measured
by the ATLAS collaboration [2] in the 1,2 and 1+2 jet exclusive bins, as well as the theoretical
predictions obtained with other generators, as described in [2]. Table 4.1 gives the values of the
measured fiducial cross section in the combined electron plus muon channel in the 1,2 and 1+2-jet
exclusive bins together with the respective quantities predicted by the aMC@NLO calculation.
The predicted result for the combined 1+2-jet bin lies below the measured value, but it is consistent
at the 2.1 σ level. The deviation from the measured values is even higher (2.5 σ) for the 2-jet bin. As
noted in the previous section, aMC@NLO predicts a high rate of events, where the two b quarks are
close enough to be reconstructed as a single b jet. This decreases the predicted cross section in the
2-jet exclusive bin. A measurement with higher precision is necessary in order to draw conclusions and

5The matching is done using the Monte Carlo truth record and searching for a W boson among the parents of a given
particle.
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calculation described in the text for the Z/γ∗bb̄ sample. Right panel: result from [1] The inset shows
the ratio e+/e−.

TABLE 4.1: Predicted and measured values of the W + b-jet fiducial cross section in the combined
electron plus muon channel.

Fiducial cross section - data [pb]

1 jet 4.5± 1.3stat ± 1.3sys

2 jet 5.7± 1.3stat ± 1.4sys

1+2 jet 10.2 ± 1.9stat ± 2.6sys

Fiducial cross section - aMC@NLO prediction [pb]

1 jet 2.4896

2 jet 0.979

1+2 jet 3.486

further cross-checks are necessary to assess how the unphysical features in the distributions presented
in the previous section affect the cross-section prediction.
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FIGURE 4.7: Transverse momentum of e+e− pair. Left panel: result from the calculation described
in the text for the Z/γ∗bb̄ sample. Right panel: result from [1].

ll
y

-4 -3 -2 -1 0 1 2 3 4

dydN
Nσ

-210

-110

1

Dilepton rapidity

FIGURE 4.8: Rapidity of e+e− pair. Left panel: result from the calculation described in the text
for the Z/γ∗bb̄ sample. Right panel: result from [1].
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FIGURE 4.9: Transverse momentum of hardest b jet. Left panel: result from the calculation
described in the text for the Z/γ∗bb̄ sample. Right panel: result from [1].
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FIGURE 4.10: Transverse momentum of second hardest b jet. Left panel: result from the calculation
described in the text for the Z/γ∗bb̄ sample. Right panel: result from [1].
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between the two hardest B hadrons. The distributions were produced from a Wbb̄ sample with the
MC11 settings. Only uncertainties associated to the MC integration are shown.
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FIGURE 4.16: (a): Invariant mass of dilepton pairs. (b): Missing transverse energy distribution.
The distributions were produced from a Wbb̄ sample with the MC11 settings. Only uncertainties
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FIGURE 4.17: Transverse momentum (a) and pseudorapidity distribution (b) of positively (red)
and negatively charged leptons (blue) produced by the decay of the W boson. The distributions were
produced from a Wbb̄ sample with the MC11 settings. The insets show the ratio l+/l−. The red
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FIGURE 4.18: Transverse momentum (a) and rapidity distribution (b) of dilepton pairs produced
by the decay of the W boson. The distributions were produced from a Wbb̄ sample with the MC11
settings. Only uncertainties associated to the MC integration are shown.
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FIGURE 4.19: Transverse momentum distribution of the leading (a) and subleading (b) b-jets in
the event. The distributions were produced from a Wbb̄ sample with the MC11 settings. The leading
b-jet distribution is normalized to σb1 = 19.7204 pb and the subleading one to σb2 = 2.5972 pb. Only
uncertainties associated to the MC integration are shown.
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Summary and Prospects

In this work we studied the soft and collinear region in tt̄+jets events and the production of W bosons
in association with bb̄ pairs at

√
s = 7 TeV.

For the study of the divergences in the low-pT region in tt̄+ jets events we compared the pT spectra
of the softest jets from a Matrix Element calculation produced with Alpgen (with the MLM matching
turned off) with a matched calculation produced by interfacing the Alpgen samples with the HERWIG
parton shower. The shape of the two spectra suggested that the region pT . 30 GeV is dominated
by soft and collinear emissions and is thus described well by the parton shower, whereas the region
pT & 50 GeV is hard enough to be described by a fixed-order matrix-element calculation. In the
intermediate region, one needs a merging scheme in order to interface a matrix-element calculation
with a parton shower. At Leading Order this is achieved e.g. by the MLM scheme, with which the
samples used in this study were produced. For the case of a NLO calculation matched to parton
shower, a similar study should be redone within the generators that use the existing NLO matching
schemes. There, one should set a pT cut at the matrix-element level, in order to avoid the low-pT
divergences, and an analysis cut panT after the parton shower. The optimal value of the generation cut
pmin
T would then be equal to the maximum value of pmin

T for which the physical observables obtained
after the analysis cut remain unchanged after the substitution pmin

T → p
′ min
T , with p

′ min
T < pmin

T .
We also calculated the Wbb̄ process at NLO accuracy with the aMC@NLO software using the ATLAS
MC11 input parameters. This was the first calculation performed with the aMC@NLO software
that included an off-diagonal CKM matrix and τ leptons. The complexity of the process required
some modifications of the original code. The physical observables presented here were obtained after
interfacing the matrix-element calculation of aMC@NLO with the HERWIG generator, within the
ATLAS framework. The calculated cross section was σWbb̄

NLO = (112.144 ± 0.064) pb at NLO and

σWbb̄
LO = (46.098 ± 0.007) pb, giving a K-factor of 2.43. The aMC@NLO prediction was compared

against the recent ATLAS measurement [2] of W production in association with one or two b jets.
The predicted cross section was below the measured one, although consistent within 2.1 σ for the
combined electron plus muon channel and for the 1+2-jet bin.
The aMC@NLO sample was found to contain some unphysical features, which are probably due to
the random number seed being the same for several contributing channels. Further cross checks are
necessary to assess how this affects the observables presented in this thesis and the predicted cross
section. As a following step, one should calculate the cross-section uncertainties related to the PDF
and scale choice, as well as to the variation of the b-quark mass. One could also produce a similar
sample interfacing with the Herwig++ shower [82] and with PYTHIA6 [83].

6At the time of writing of this thesis, only the interface to the virtuality-ordered shower of Pythia6 was available.
The interface to Pythia8 was expected to become available in a short time.
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Appendix A

Input parameters for the generation of the tt̄+ jets and

Wbb̄ samples

A.1 Alpgen parameters

The tt̄jj samples were produced with Alpgen version 2.13 and the parton shower was added with HER-
WIG version 6.510 interfaced with Jimmy version 4.31. The simulated showered events were taken
from the official ATLAS MC samples produced with the MC10 parameter defaults and correspond to
the dataset numbers 105894-105897. More precisely the datasets used are the following:

mc10 7TeV.105890.AlpgenJimmyttbarlnlnNp0 baseline.merge.NTUP TOP.e600 s933 s946 r2302 r2300 p572 tid366962 00

mc10 7TeV.105890.AlpgenJimmyttbarlnlnNp0 baseline.merge.NTUP TOP.e600 s933 s946 r2302 r2300 p572 tid366963 00

mc10 7TeV.105891.AlpgenJimmyttbarlnlnNp1 baseline.merge.NTUP TOP.e600 s933 s946 r2302 r2300 p572 tid366964 00

mc10 7TeV.105891.AlpgenJimmyttbarlnlnNp1 baseline.merge.NTUP TOP.e600 s933 s946 r2302 r2300 p572 tid366965 00

mc10 7TeV.105892.AlpgenJimmyttbarlnlnNp2 baseline.merge.NTUP TOP.e600 s933 s946 r2302 r2300 p572 tid366966 00

mc10 7TeV.105892.AlpgenJimmyttbarlnlnNp2 baseline.merge.NTUP TOP.e600 s933 s946 r2302 r2300 p572 tid366967 00

mc10 7TeV.105893.AlpgenJimmyttbarlnlnNp3 baseline.merge.NTUP TOP.e600 s933 s946 r2302 r2300 p572 tid366968 00

mc10 7TeV.105893.AlpgenJimmyttbarlnlnNp3 baseline.merge.NTUP TOP.e600 s933 s946 r2302 r2300 p572 tid366969 00

The fixed-order samples were produced locally with Alpgen version 2.14 and using the same input
parameters as the showered events. The parameters needed for the event generation are given in the
Table A.1. The rest of the input parameters are set to the default values coded in Alpgen. The parame-
ters needed for the parton shower and the multi-parton interactions simulation with HERWIG/Jimmy
are given in TableA.2. The MC samples use the tuning parameters of the ATLAS Underlying Event
Tune 1 [84].

A.2 HERWIG parameters for Z/γ∗bb̄ showering and hadronization

Table A.3 contains all the necessary input parameters that the user has to input in the driver that
interfaces the Matrix Element calculation from aMC@NLO with HERWIG 6.520 for showering and
hadronization.
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52 APPENDIX A EVENT GENERATION PARAMETERS

TABLE A.1: Setup for tt̄jj calculation with Alpgen

Parameter Value

Beam energy ebeam= 3500

Top mass mt= 172.5

PDF ndns= 9 (CTEQ6L1 [85])

Scale functional form iqopt= 1
(

µ =
√

∑

m2
T

)

Parton matching ickkw= 1 (for MLM matching)

EW parameter scheme
iewopt= 3

(mW = 80.419 GeV,mZ = 91.188 GeV, GF = 1.16639 · 10−5 GeV−2)

CKKW αs scale ktfac= 1

Top decay mode itdecmod= 4(lνqq) or itdecmod= 5(lνlν)

Light jet veto ptjmin= 15 (GeV)

Maximum light-jet rapidity etajmax= 6

Maximum b-quark rapidity etabmax= 6

Maximum c-quark rapidity etacmax= 6

Maximum photon rapidity etaphmax= 6

Jet separation ∆Rjj = ∆RjQ drjmin= 0.7

MLM clustering energy (Eclus
T ) 501 20 (20 GeV)

MLM clustering radius (Rclus) 502 0.7

MLM clustering pseudorapidity (ηclus) 503 6

Inclusive or exclusive mode 504 0 (inclusive) or 504 1 (exclusive)

A.3 aMC@NLO parameters for Wbb̄ generation with the ATLAS

MC11 defaults

Table A.4 contains the input parameters needed for the generation of theWbb̄ sample with aMC@NLO
using the ATLAS MC11 default parameter settings1 . The parameter bwcutoff determines weather
a resonance is written in the LHE file. More precisely, if the generated mass of the resonance X is
mX < bwcutoff · ΓX , then X will be written in the event record as an intermediate state and the
showering and hadronization generators will not change its mass.

1We note that the CT10 PDF set used for the calculation contained floating-point format errors in some of the
uncertainty eigenvector sets that have to be fixed by
sed -i.bak ’s/[_0-9]{7}-[0-9]{3}/0.00000E+00/g’ CT10.LHgrid ; rm CT10.LHgrid.bak.
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TABLE A.2: Setup for tt̄jj Parton Shower with HERWIG/Jimmy

Parameter Value

Cut-off scheme for ISR ISPAC= 2

UE (2→ 2 scattering) JMUEO= 1

Multi-Parton Interactions MSFLAG= 1

Soft Underlying Event PRSOFT= 0

Primordial kT width PTRMS= 1.2

Inverse proton radius squared JMRAD(73)= 1.69

Minimum pT of secondary scatters PTJIM= 4.14

PTJIM = PTJIM0
√
s

1800EXP
PTJIM0= 2.857

EXP= 0.273

PDF set
AUTPDF=HWLHAPDF

MODPDF= 20650 (MRST2007lomod [86])

Mesons/Baryons ratio in B decays CLPOW= 1.2

Lifetime cut (Ks,Λ stable) PLTCUT= 0.0000000000333

TABLE A.3: Setup for Z/γ∗bb̄ Parton Shower with HERWIG

Parameter Value

PDF set
IPDF= 1,AUTPDF(I)=LHAPDF, AUTPDF(I)= 23300

MSTW2008NLO [64]

Process number
IPROC= −8000

Underlying Event ON with events provided by external LHE file

ΛQCD TMPLAM= −1 (HERWIG default)

Z mass and width RMASS(200)= 91.188, GAMZ= 2.4414

W mass and width RMASS(198)= 80.419, GAMW= 2.0476

Top mass and width RMASS(6)= 172.5, GAMT0= 1.4

Higgs mass and width RMASS(201)= 120 ,GAMH= 0.0049

d, u, s, c, b, g masses
RMASS(1)= 0.32,RMASS(2)= 0.32,RMASS(3)= 0.5

RMASS(4)= 1.55,RMASS(5)= 4.5,RMASS(13)= 0.75

me = mµ = 0
RMASS(121)=0.D0, RMASS(123)=0.D0

RMASS(127)=0.D0, RMASS(129)=0.D0

Photon radiation from ISR ZMXISR= 0 (OFF)

Z decay mode
MODBOS(I)= 2

Only Z → e+e− decays
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TABLE A.4: Setup for Wbb̄ generation with aMC@NLO - MC11 defaults

Parameter Value

Model
smckmNLO

for massive b quarks and off-diagonal CKM matrix

Proton and Jet parton content
P dd uu ss cc g, J dd uu ss cc g

maxjetflavor= 4 (for massive b quarks)

PDFset
pdlabel ’lhapdf’, lhaid 10800

CT10 [87]

Electroweak coupling constant alpha em(MZ)(-1)=1.32348905E+02

Fermi constant G Fermi 1.16637000E-05

Strong coupling constant alpha s(MZ) 1.18400000E-01

Z mass 9.11876000E+01

W mass MW 8.03990000E+01

Weinberg mixing angle sinthetaW**2 0.22262652E+00

b quark pole mass 4.75000000E+00

Top pole mass 1.72500000E+02

Top width 0.00000000E+00

Z width 2.49520000E+00

W width 2.08500000E+00

τ mass 1.77682000E+00

CKM Matrix Elements

Vud 9.74280000E-01 Vus 2.25300000E-01 Vub 3.47000000E-03

Vcd 2.25200000E-01 Vcs 9.73450000E-01 Vcb 4.10000000E-02

Vtd 8.62000000E-03 Vts 4.03000000E-02 Vtb 9.99152000E-01

Breit-Wigner cutoff bwcutoff=100
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